Vol II Issue V Nov 2012

Impact Factor : 0.1870

ISSN No :2231-5063

Monthly Multidiciplinary Research Journal

Golden Research Thoughts

Chief Editor Dr.Tukaram Narayan Shinde

Publisher Mrs.Laxmi Ashok Yakkaldevi Associate Editor Dr.Rajani Dalvi

IMPACT FACTOR : 0.2105

Welcome to ISRJ

RNI MAHMUL/2011/38595

ISSN No.2230-7850

Indian Streams Research Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial Board readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

international Advisory board			
	Flávio de São Pedro Filho Federal University of Rondonia, Brazil Kamani Perera	Mohammad Hailat Dept. of Mathmatical Sciences, University of South Carolina Aiken, Aiken SC 29801	Hasan Baktir English Language and Literature Department, Kayseri
	Regional Centre For Strategic Studies, Sri Lanka		Ghayoor Abbas Chotana Department of Chemistry, Lahore University of Management Sciences [PK
	Janaki Sinnasamy Librarian, University of Malaya [Malaysia]	Catalina Neculai University of Coventry, UK] Anna Maria Constantinovici AL. I. Cuza University, Romania
	Romona Mihaila Spiru Haret University, Romania	Ecaterina Patrascu Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret University, Bucharest, Romania
	Delia Serbescu Spiru Haret University, Bucharest, Romania	Loredana Bosca Spiru Haret University, Romania	Ilie Pintea, Spiru Haret University, Romania
	Anurag Misra DBS College, Kanpur	Fabricio Moraes de Almeida Federal University of Rondonia, Brazil	Xiaohua Yang PhD, USA Nawab Ali Khan
	Titus Pop	George - Calin SERITAN Postdoctoral Researcher	College of Business Administration
Editorial Board			
	Pratap Vyamktrao Naikwade ASP College Devrukh,Ratnagiri,MS India	Iresh Swami Ex - VC. Solapur University, Solapur	Rajendra Shendge Director, B.C.U.D. Solapur University, Solapur
	R. R. Patil Head Geology Department Solapur University, Solapur	N.S. Dhaygude Ex. Prin. Dayanand College, Solapur	R. R. Yalikar Director Managment Institute, Solapur
	Rama Bhosale Prin. and Jt. Director Higher Education, Panvel	Narendra Kadu Jt. Director Higher Education, Pune K. M. Bhandarkar	Umesh Rajderkar Head Humanities & Social Science YCMOU, Nashik
	Salve R. N. Department of Sociology, Shivaji University, Kolhapur	Praful Patel College of Education, Gondia Sonal Singh Vikram University, Ujjain	S. R. Pandya Head Education Dept. Mumbai University, Mumbai
	Govind P. Shinde Bharati Vidyapeeth School of Distance Education Center, Navi Mumbai	G. P. Patankar S. D. M. Degree College, Honavar, Karnataka	Alka Darshan Shrivastava Shaskiya Snatkottar Mahavidyalaya, Dhar
		Maj. S. Bakhtiar Choudhary	Rahul Shriram Sudke

Ph.D.-University of Allahabad

Director, Hyderabad AP India.

S.Parvathi Devi

Ph.D , Annamalai University, TN

Devi Ahilya Vishwavidyalaya, Indore

Awadhesh Kumar Shirotriya Secretary, Play India Play (Trust),Meerut Sonal Singh

Chakane Sanjay Dnyaneshwar Arts, Science & Commerce College,

Indapur, Pune

Satish Kumar Kalhotra

S.KANNAN

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.isrj.net

Golden Research Thoughts Volume 2, Issue. 5, Nov. 2012 **ISSN:-2231-5063**

Available online at www.aygrt.net

ORIGINAL ARTICLE

FREQUENCY DEPENDENCE OF AC CONDUCTIVITY OF DIVALENT OXALATE CRYSTALOXALATE SINGLE CRYSTALS

BABITAA. SAIYED

Shree P.M.Patel College of Electronics & Communication, Anand.

Abstract:

Characterization of the grown cadmium oxalate single crystals is an essential requirement to describe, confront and explain their various properties. Cadmium oxalate trihydrate (CdC2O4·3H2O) single crystals suitable for the present investigation were grown using controlled diffusion process in silica gels. The investigation on electrical parameters of cadmium oxalate has been carried out to understand the mechanism of charge transport. The crystal shows a very prominent sharp peak at 385 K. This confirms to the dehydration temperature. The dielectric constant for (001) planes remain almost temperature independent upto 450K. It is difficult to distinguish the variation with frequency. The temperature 450K corresponds to generation of complete dehydrated sample of cadmium oxalate, in confirmation of thermal analysis

KEYWORDS:

Gel Method, Oxalate Crystal, Dc Conductivity, Activation Energy, Etc

INTRODUCTION

In recent years, owing to a number of practical applications in the field of micro-electronics and opto-electronics a great deal of interest has been shown in the study of the dielectric and conduction behaviour of various materials1-5). From measurements of the dielectric constant and the dielectric loss as a function of frequency and temperature, various polarization mechanisms in solids (such as atomic polarization of lattice, orientational polarization of dipoles, space charge polarization) and the electric field distribution can be understood6,7). A typical variation in dielectric constant with frequency has been attributed to the defect structure of the nanophase such as AgI8), Ag2HgI49). The investigation on electrical parameters of cadmium oxalate has been studied to understand the mechanism of charge transport at different temperatures and frequencies.

EXPERIMENTAL

The electrical conductivity measurements were carried out in the temperature range 300 to 600K for ten different input frequencies in the range 800 Hz to 1 MHz. The specimens were mounted between two stainless steel electrodes and it was then put into the resistance-heated furnace and the temperature of the sample was monitored using a chromel-alumel thermocouple. The temperature of the furnace was gradually increased by regulating the input power through a dimmerstat (AE; 0-270 V, 9 amp), so as to maintain constant heating rate during the whole experiment. The frequency dependent resistance was determined using a precision type 'Hewlett Packard' 4284 A LCR meter in the range 20 Hz to 1MHz. The values of capacitance and dissipation factor at different temperatures were converted into electrical conductivity (σ ac). The dielectric constant is calculated using the relation $\epsilon' = Ct/\epsilon_0 A$ where C is the

measured capacitance of the sample, t is the sample thickness, ɛ0 is the free space permittivity and A is area

Golden Research Thoughts • Volume 2 Issue 5 • NOV. 2012

FREQUENCY DEPENDENCE OF AC CONDUCTIVITY OF DIVALENT

of cross section of the sample inserted between the parallel electrodes.

RESULTAND DISCUSSION:

AC CONDUCTIVITY

The ac conductivity measurements have attracted the most attention because they are widely used for understanding the nature of conduction and defects in materials. The most familiar equation proposed to explain this type of conduction is

$$\sigma(\omega) = A \,\omega^s \tag{1}$$

Several models such as Quantum Mechanical Tunneling (QMT) model10,11), Correlated Barrier Hopping (CBH)model12,13) and Overlapping Large Polaron Tunneling (OLPT) model14) have been proposed to interpret the mechanism of ac conduction. The ac conductivity σ is calculated at different temperatures using the equation

$$\sigma = \omega \varepsilon_0 \varepsilon' \tan \delta \tag{2}$$

where ε_0 is the vacuum dielectric constant.

The plot of $\ln \sigma$ against 1000/T as obtained at different frequencies is shown in Fig.1.The dc conductivity has also been included in the plot for ready reference and comparison. The ac conductivity in Fig.1 show a lesser temperature dependence with increasing frequency, but it is more at higher temperature. The shape of the curves in Fig.1 suggests two different regimes, one with weak temperature dependence and other with relatively stronger temperature dependence. Overall, the ac component of the frequency dependent

conductivity $\sigma_{a}(\omega)$ can be expressed as the sum of the two different conduction mechanisms 15)

$$\sigma_{ac}(\omega) = \sigma_f + \sigma_s \tag{3}$$

where σ_{c} represents the relatively weak temperature dependent mechanism which is to be interpreted as being due to hopping between localized states at the Fermi level, and σ_{c} represents the strong temperature dependence component of ac conductivity and is numerically obtained by subtracting σ_{c} from $\sigma_{ac}(\omega)$ and this mechanism may be interpreted as being due to hopping between localized states near band edges (edges of the valence and/or the conduction band). This conjecture agrees with that obtained before by Rockstad15).

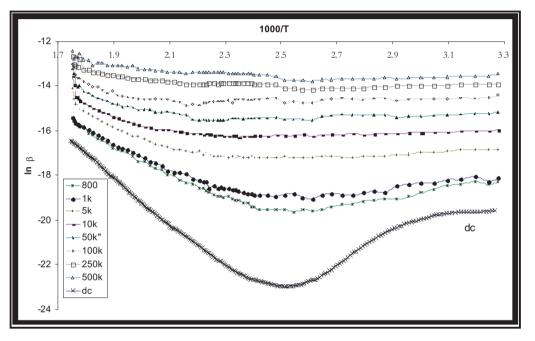
The ac conductivity $\sigma_{ac}(\omega)$ can also be expressed as 15)

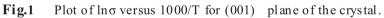
$$\sigma_{ac}(\omega) = \sigma_{t}(\omega) + \sigma_{dc} \tag{4}$$

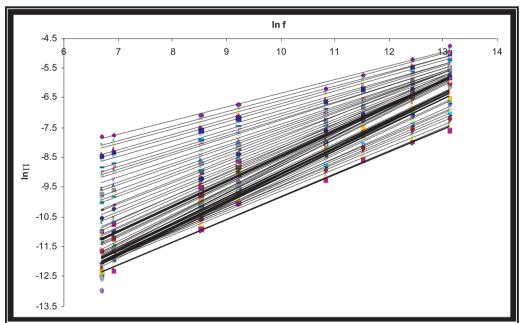
where σ_{dc} is the dc part of the total conductivity. The resolution of $\sigma_t(\omega)$ into σ_{dc} and $\sigma_t(\omega)$ mostly arise from different processes in different states, since σ_{dc} is due to extended states and σ_{ac} due to localized states 15-18).

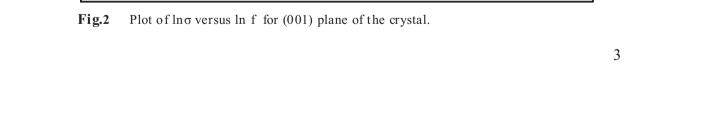
The relationship between the ac conductivity and the applied frequency at different constant temperature values are shown in Fig.2. The frequency dependence of ac conductivity, which rises almost linearly (Fig.2), is most likely due to hopping of electrons between two pairs of localized states. The frequency exponents (refer to equation (1)) is calculated from the slopes of ln σ_{ac} versus ln f graphs. The

dependence of the frequency exponent s on temperature as obtained is shown in Fi.g3 .The graphs show increase in 's' upto the water liberating temperature, which matches with the data obtained from DTA - TGA, and then decreases with an increases of temperature through frequency and temperature ranges. The fact that the frequency exponent s is temperature dependent indicates that the bipolaron conduction is a thermally activated process which takes place under the assistance of phonons. In other words, one can conclude that the exponent s is somewhat temperature sensitive and agrees with the Correlated Barrier


FREQUENCY DEPENDENCE OF AC CONDUCTIVITY OF DIVALENT




Hopping model (CBH)18). The numerical values of s lie in the range $0.5 \le s \le 0.9$ and hence are closely associated with the established carrier transport19).


CONCLUSIONS:

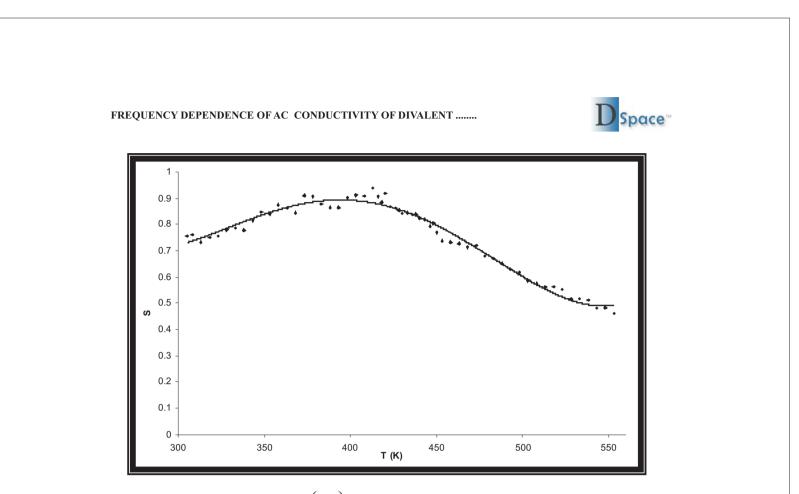

The frequency dependence of ac conductivity, which rises almost linearly, is most likely due to hopping of electrons between two pairs of localized states. The frequency exponent s is temperature dependent indicates that the bipolaron conduction is a thermally activated process which takes place under the assistance of phonons. In other words, one can conclude that the exponent s is somewhat temperature sensitive and agrees with the Correlated Barrier Hopping model (CBH)18).



Fig.3 Plot of S versus T for (001) plane of the crystal.

REFERENCES

1.S.Gogoi and K.Bugua, Thin Solid Films 92 (1982) 227. 2.R.D.Gould and C.J.Bowler, Thin Solid Films 164 (1988) 281. 3.B.B.Ismail and R.D.Gould, Phys. Stat. Solidi (a) 115 (1989) 237. 4.R. Sathyamoorthy, S.K.Narayandass, C.Balasubramanian and D. Magalaraj, Proc. Solid State Phys. *Symp.* 33C (1991) 409. 5.Byung-Moon Jin, A.S.Bhalla, Byung-Chun Choi and Jung-Nam Kim, Phys. Stat. Sol. 140 (1993) 239. 6.B. Tareev, 'Physics of dielectric materials' Mir Publishers, Moscow, 1974. 7.A.Chelkowski, 'Dielectric Physics', Elsevier Scientific Pub. Co. 1980. 8.M.Abdulkadhar and B.Thomas, Bull. Mater. Sci., 19 (1996) 631. 9.S.Sankara Narayanan Potty and M.Abdulkhadar, Bull. Mater. Sci., 23 (2000) 361. 10.M. Pollak and T.H.Geballe., Phys. Rev., 122 (1961) 1742. 11.I.G.Austin and N.F.Mott, Adv. Phys. 18 (1969) 41. 12.G.E.Pike, Phys. Rev. B, 6 (1972)1572. 13.S.R.Elliott, Phil. Mag.B 36 (1977) 291. 14.J. Ashok Kumar, N. Dar, H. B. Lal, Phys. C: *Solid State Physics 7 (1974) 4335*. 15.H.K. Rockstad., Solid State Commun, 7 (1969) 1507. 16.H.K. Rockstad., Solid State Commun., 7 (1971) 2233. 17.H.K. Rockstad., J. Non-Solids 2 (1970) 192. 18.S.K.Ubale, C.S.Adgaonkar, Ind. J. Pure & Appl. Phys. 39 (2001) 586.

1.H.K. Rockstad., J. Non-Solids 8 (1970) 621.

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished research paper.Summary of Research Project,Theses,Books and Books Review of publication,you will be pleased to know that our journals are

Associated and Indexed, India

- ★ International Scientific Journal Consortium Scientific
- * OPEN J-GATE

Associated and Indexed, USA

- EBSCO
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Databse
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database

Golden Research Thoughts

258/34 Raviwar Peth Solapur-413005,Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.isrj.net