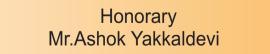
Vol III Issue VII Jan 2014

Impact Factor : 1. 9508(UIF)

ISSN No :2231-5063


International Multidisciplinary Research Journal

Chief Editor Dr.Tukaram Narayan Shinde

Publisher Mrs.Laxmi Ashok Yakkaldevi Associate Editor Dr.Rajani Dalvi

IMPACT FACTOR : 1. 9508(UIF)

Welcome to GRT

RNI MAHMUL/2011/38595

ISSN No.2231-5063

Golden Research Thoughts Journal is a multidisciplinary research journal, published monthly in English, Hindi & Marathi Language. All research papers submitted to the journal will be double - blind peer reviewed referred by members of the editorial board.Readers will include investigator in universities, research institutes government and industry with research interest in the general subjects.

International Advisory Board

	iternational Advisory board	
Flávio de São Pedro Filho Federal University of Rondonia, Brazil	Mohammad Hailat Dept. of Mathematical Sciences, University of South Carolina Aiken	Hasan Baktir English Language and Literature Department, Kayseri
Kamani Perera Regional Center For Strategic Studies, Sr Lanka	i Abdullah Sabbagh Engineering Studies, Sydney	Ghayoor Abbas Chotana Dept of Chemistry, Lahore University of Management Sciences[PK]
Janaki Sinnasamy Librarian, University of Malaya	Catalina Neculai University of Coventry, UK	Anna Maria Constantinovici AL. I. Cuza University, Romania
Romona Mihaila Spiru Haret University, Romania	Ecaterina Patrascu Spiru Haret University, Bucharest	Horia Patrascu Spiru Haret University,
Delia Serbescu Spiru Haret University, Bucharest, Romania	Loredana Bosca Spiru Haret University, Romania Fabricio Moraes de Almeida	Bucharest,Romania Ilie Pintea, Spiru Haret University, Romania
Anurag Misra DBS College, Kanpur	Federal University of Rondonia, Brazil George - Calin SERITAN	Xiaohua Yang PhD, USA
Titus PopPhD, Partium Christian University, Oradea,Romania	Faculty of Philosophy and Socio-Political Sciences Al. I. Cuza University, Iasi	More
	Editorial Board	
Pratap Vyamktrao Naikwade ASP College Devrukh,Ratnagiri,MS India	Iresh Swami Ex - VC. Solapur University, Solapur	Rajendra Shendge Director, B.C.U.D. Solapur University, Solapur
R. R. Patil Head Geology Department Solapur University,Solapur	N.S. Dhaygude Ex. Prin. Dayanand College, Solapur	R. R. Yalikar Director Managment Institute, Solapur
Rama Bhosale Prin. and Jt. Director Higher Education, Panvel	Narendra Kadu Jt. Director Higher Education, Pune K. M. Bhandarkar	Umesh Rajderkar Head Humanities & Social Science YCMOU,Nashik
Salve R. N. Department of Sociology, Shivaji University,Kolhapur	Praful Patel College of Education, Gondia Sonal Singh Vikram University, Ujjain	S. R. Pandya Head Education Dept. Mumbai University, Mumbai
Govind P. Shinde	G. P. Patankar	Alka Darshan Shrivastava

S. D. M. Degree College, Honavar, Karnataka Shaskiya Snatkottar Mahavidyalaya, Dhar

Maj. S. Bakhtiar ChoudharyIDirector,Hyderabad AP India.I

S.Parvathi Devi

Rahul Shriram Sudke Devi Ahilya Vishwavidyalaya, Indore

S.KANNAN

Ph.D.-University of Allahabad

Awadhesh Kumar Shirotriya Secretary,Play India Play,Meerut(U.P.)

Arts, Science & Commerce College,

Bharati Vidyapeeth School of Distance Education Center, Navi Mumbai

Chakane Sanjay Dnyaneshwar

Indapur, Pune

Sonal Singh, Vikram University, Ujjain Annamalai University, TN

Satish Kumar Kalhotra Maulana Azad National Urdu University

Address:-Ashok Yakkaldevi 258/34, Raviwar Peth, Solapur - 413 005 Maharashtra, India Cell : 9595 359 435, Ph No: 02172372010 Email: ayisrj@yahoo.in Website: www.aygrt.isrj.net Golden Research Thoughts ISSN 2231-5063 Impact Factor : 1.9508(UIF) Volume-3 | Issue-7 | Jan-2014 Available online at www.aygrt.isrj.net

1

GRT "STUDY OF PHYSICO CHEMICAL PARAMETARS AND METALS DETERMINED BY DIFFERENT ANALYSIS METHODS FROM CHEMICAL DIVISION IN SANJIVANI SAHAKARI SAKHAR KARKHANA LIMITED, SAHAJANANDNAGAR, TAL – KOPARGAON (M. S.) (INDIA)."

M. D. Sangale

Head and Associate professor, Department of Chemistry, A.A.College, Manchar, Dist-Pune(M.S.)

Abstract:-In the recent past several studies have reported the water bodies becoming increasingly contaminated due to domestic and industrial wastes. The Sanjivani Sahakari Sakhar Karkhana Limited, Sahajanandnagar, Tal – Kopargaon Maharashtra State (India) having important factor in rural economy of Ahmednagar district & is situated at Sahajanandnagar of Kopargaon Taluka.

It is useful in development of many other industries such as distillary, biogas plant, acetaldehyde plant, acetic acid plant and spirit production. The area of Kopargaon has been developed by this sugar mill because of the income gained by the farmers and the rural people of the surrounding area. But its liquid effluent containing heavy as well as toxic metals and having bad odour which have posed the threat to the ecological balance of rural area around. To minimize this problem industry have started plants such as biogas plant, distillery plant etc. to make use of the polluted liquid effluent for production of biogas and alcohol beverages. This treated liquid effluent can be used as a fertilizer.

The present study deals with the physico-chemical parameters and metals such as Ca, Mg, etc. determined by different analysis methods & compare the limits with standards available for us.

Keywords: heavy as well as toxic metals, physico-chemical parameters, contaminated due to domestic and industrial wastes.

INTRODUCTION

Study area which we have selected for our analysis purpose is situated to east at 1.5 km away from our educational institute.

SAMPLING SITES AND COLLECTION

The sampling site which we have selected is Biogas plant. At the site we have collected inlet spent wash which is disposal of distillery plant after production of alcohol. Other sample collected is disposal of biogas plant which is treated spent wash with DAP for production of biogas.

Random selection method is used for collection of sample. We have collected samples at three different sessions in morning, noon and evening. From these a representative composite sample of two litre volume is made for analysis purpose. Polythene bottles are used for sample collection which were thoroughly washed with distilled water. At the time of collection the bottles were rinsed with sample 3-4 times and then sample was collected. The distance between the inlet spent wash and outlet effluent is 50 meter.

ANALYSIS OF EFFLUENT WATER:

For the analysis of inlet and outlet waste water the methods used for estimation of particular parameters are as follows.

M. D. Sangale, ""STUDY OF PHYSICO CHEMICAL PARAMETARS AND METALS DETERMINED BY DIFFERENT ANALYSIS METHODS FROM CHEMICAL DIVISION IN SANJIVANI SAHAKARI SAKHAR KARKHANA LIMITED, SAHAJANANDNAGAR, TAL – KOPARGAON (M. S.) (INDIA).", Golden Research Thoughts | Volume 3 | Issue 7 | Jan 2014 | Online & Print

Sr.No.ParametersMethod1.TemperatureBy Thermometer2.pHpH meter3.Dissolved Oxygen (DO)Winkler's iodometric method4.Chemical Oxygen Demand (COD)Titrimetry5.ConductivityConductometry6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideSpectrophotometry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry20.Langelier CaCO ₃ Saturation indexpH – metry			
2.pHpH meter3.Dissolved Oxygen (DO)Winkler's iodometric method4.Chemical Oxygen Demand (COD)Titrimetry5.ConductivityConductometry6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH - metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideSpectrophotometry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	Sr.No.	Parameters	Method
113.Dissolved Oxygen (DO)Winkler's iodometric method4.Chemical Oxygen Demand (COD)Titrimetry5.ConductivityConductometry6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideSpectrophotometry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	1.	Temperature	By Thermometer
4.Chemical Oxygen Demand (COD)Titrimetry5.ConductivityConductometry6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	2.	pH	pH meter
5.ConductivityConductometry6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	3.	Dissolved Oxygen (DO)	Winkler's iodometric method
6.Total Solid (TS)Gravimetry7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	4.	Chemical Oxygen Demand (COD)	Titrimetry
7.Total Dissolved Solids (TDS)Gravimetry8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	5.	Conductivity	Conductometry
8.Total Suspended Solids (TSS)Gravimetry9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	6.	Total Solid (TS)	Gravimetry
9.Redox PotentialpH – metry10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	7.	Total Dissolved Solids (TDS)	Gravimetry
10.Frideric Formanprovider y10.Total alkalinity, carbonate BicarbonatesTitrimetry11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	8.	Total Suspended Solids (TSS)	Gravimetry
11.AcidityTitrimetry12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	9.	Redox Potential	pH – metry
12.Carbon dioxideTitrimetry13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	10.	Total alkalinity, carbonate Bicarbonates	Titrimetry
13.Inorganic PhosphorousSpectrophotometry14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	11.	Acidity	Titrimetry
14.SulphateGravimetry15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	12.	Carbon dioxide	Titrimetry
15.ChlorideTitrimetry / Argentometry16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	13.	Inorganic Phosphorous	Spectrophotometry
16.HardnessEDTA method17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	14.	Sulphate	Gravimetry
17.CalciumEDTA method18.MagnesiumEDTA method19.Oil and GreeseGravimetry	15.	Chloride	Titrimetry / Argentometry
18. MagnesiumEDTA method19. Oil and GreeseGravimetry	16.	Hardness	EDTA method
19. Oil and Greese Gravimetry	17.	Calcium	EDTA method
	18.	Magnesium	EDTA method
20. Langelier $CaCO_3$ Saturation index $pH - metry$	19.	Oil and Greese	Gravimetry
	20.	Langelier CaCO ₃ Saturation index	pH – metry

Parameters:

Temperature result table:

The determination of temperature of both the samples is done by similar way. The sample was collected in beaker and soon the temperature was recorded by inserting the thermometer.

2

Sr.no.	Sample	Temperature(°C)
1)	(S1)	38
2)	(S2)	32

pH result table:

Sr.no.	Sample	pН
1)	(S1)	3.05
2)	(S2)	7.43

Chemical Oxygen Demand (COD) result table:

Reactions:

 $Cr_{2}O_{7}^{-2} + 14H^{+} + 6e^{-} \qquad \qquad 2Cr^{3+} + 7H_{2}O$ $6Fe^{2+} \qquad \qquad 6Fe^{3+} + 6e^{-}$

Sr.no.	Sample	COD (ppm)
1)	(S1)	90,000
2)	(S2)	27,000

Dissolved oxygen result table:

Winkler's iodometric method

Reactions:

Sr.no.	Sample	DO (ppm)
1)	(S1)	2.0588
2)	(S2)	3.6363

Conductivity result table:

Sr.no.	Sample	Conductivity (mhos)
1)	(S1)	0.0128500
2)	(S2)	0.001428

Total solids result table:

Sr.no.	Sample	Total solids (ppm)
1)	(S1)	54,740
2)	(S2)	27,680

Total Dissolved Solids result table:

Sr.no.	Sample	TDS (ppm)
1)	(S1)	40,000
2)	(S2)	26,420

Golden Research Thoughts | Volume 3 | Issue 7 | Jan 2014

3

Total Suspended solids result table:

Sr.no.	Sample	TSS (ppm)
1)	(S1)	14,740
2)	(S2)	1,260

Redox Potential result table:

Sr.no.	Sample	Redox potential (mV)
1)	(S1)	-131
2)	(S2)	-348

Total Alkalinity – carbonates & bicarbonates result table:

Reactions:

$$CaCO_{3} + 2HC1 \longrightarrow CaCl_{2} + H^{+} + HCO^{-3}$$
$$HCO^{-3} + H^{+} \longrightarrow H_{2}CO_{3}$$
$$H_{2}CO_{3} \longrightarrow H_{2}O + CO_{2} \clubsuit$$

Sr.no.	Sample	Total alkalinity (ppm)
1)	(S1)	12,712.5
2)	(S2)	22,275.0

Acidity result table:

Titration method

Sr.no.	Sample	Acidity (ppm)
1)	(S1)	6,250
2)	(S2)	1,500

Carbon Dioxide result table:

Sr.no.	Sample	Carbon dioxide (ppm)
1)	(S1)	6,732
2)	(S2)	0

Inorganic Phosphorous result table:

Sr.no.	Sample	Inorganic	phosphorous (ppm	1)
1)	(S1)	0.520238		
2)	(S2)	0.201391		

4

Sulphate result table:

Gravimetric method

Reaction:

 $Ba^{2+} + SO_4^{2-}$ BaSO_4

Sr.no.	Sample	Sulphate (ppm)
1)	(S1)	79.21375
2)	(S2)	87.5672

Chloride result table:

Reactions:

$$Ag^{+} + Cl^{-} \qquad \qquad AgCl (White ppt.).$$

$$2Ag^{+} + CrO_{4}^{2^{-}} \qquad \qquad Ag_{2}CrO_{4} (Reddish Reddish Reddis$$

$$Ag_2CrO_4$$
 (Reddish brown ppt.).

Sr.no.	Sample	Chloride (ppm)
1)	(S1)	4331
2)	(S2)	6674

Hardness result table:

EDTA method

Reactions:

 $M^{2+} + EBT$

M-EBT + EDTA

→ M-EBT complex (Wine red). \longrightarrow M-EDTA + EBT (where M-metal)

5

Sr.no.	Sample	Hardness (ppm)
1)	(S1)	8200
2)	(S2)	6600

Calcium result table:

Sr.no.	Sample	Calcium (ppm)
1)	(S1)	2444.88
2)	(S2)	5771.52

Magnesium result table:

			Magnesium (ppm)
Sr.	no.	Sample	
1)		(S1)	1289.1468
2)		(S2)	185.5795

Langelier Calcium carbonate saturation index result table:

Sr.no.	Sample	Langelier CaCO ₃ saturation index
1)	(S1)	-1.35
2)	(S2)	-0.10

Oil and grease result table:

Sr.no.	Sample	Oil & grease (ppm)
1)	(S1)	30240
2)	(S2)	1000

Physico-chemical characteristics of effluent water analysis:

Sr. No.	Parameters	Sample first (raw spent	Sample second (Treated
		wash) (ppm)	effluent) (ppm)
1	Dissolved Oxygen (DO)	2.0588	3.6363
2	Chemical Oxygen Demand (COD)	90,000	27,000
3	Total Solids (TS)	54,740	27,680
4	Total Dissolved Solids (TDS)	40,000	26,420
5	Total Suspended Solids (TSS)	14,740	1,260
6	Total alkalinity, carbonates & bicarbonates	12,712.5	22,275
7	Acidity	6,250	1,500
8	Carbon dioxide	6,732	0
9	Inorganic phosphorous	0.520238	0.201391
10	Sulphate	79.21375	87.5672
11	Chloride	4,331	6,674
12	Hardness	8,200	6,600
13	Calcium	2444.88	5771.52
14	Magnesium	1289.14	185.57
15	Oil and grease	30,240	1,000

Physico-chemical characteristics of effluent water analysis:

Sr. No.	Parameters	Sample first (raw spent	Sample second (Treated
		wash)	effluent)
1	Temperature	38°C	32°C
2	pH	3.05	7.43
3	Conductivity	0.01285 mhos	0.001428 mhos
4	Redox potential	-131 mV	-348 mV
5	LangelierCaCO ₃ saturation index	-1.35	-0.10

Golden Research Thoughts | Volume 3 | Issue 7 | Jan 2014

6

RESULTS & DISCUSSIONS

Physico - chemical parameters

1)The results related to the physico-chemical characteristic of the sugar mill distillery effluent collected at biogas plant. The inlet & outlet composite effluent samples have been listed in the given result table.

2)The results reveal that the pH value have increased after treatment. The acidic pH (3.05) of inlet spent wash changes, to alkaline pH (7.43) after treatment. The pH values are not in standard range (4.3-5.3) recommended by ISI & WHO.

3)The concentration of dissolved oxygen in water depends on temperature, pressure and concentration of various ions. The DO level was recorded in the range of 2 to 4 ppm.

4)The TDS values ranges between 26000 to 4000 ppm which are in the recommended standard range. The term total hardness indicates the concentration of Ca & Mg only. It is express in terms of calcium carbonates. Total hardness varies from 6500 to 8500 ppm.

5)Carbon dioxide, inorganic phosphorous, oil and grease these parameters have been decreased from untreated to treated effluent.

6). The electrical conductivity is very low & is 0.01285 mhos for untreated effluent which decrease to 0.01168 mhos for treated effluent after biogas formation.

CONCLUSION

1)The pH values of effluents are higher than standard limits probably due to the presence of chemicals formed by degradation of sugar itself.

2) High DO concentration is undesirable as it accelerate the corrosion at high temperature and pressure.

3) The lower range of conductivity value indicates that effluent water has less content of inorganic acids, bases and salts which are good conductor.

4) Sudden rise in conductivity in water indicates addition of some Pollutants.

5) Water having conductivity more than 20 mmhos have not been suitable for irrigation as the samples which we have analysed have the conductivity between 11-13 mmhos is therefore suitable for irrigation purpose.

6) Lower values of redox potential indicates more & more reduction processes while rise in it will denote more oxidation processes. Redox potential related to pH–when there is decrease in 1 unit of pH, there is decrease in 0.058 V of redox potential. 7) Langelier calcium carbonate saturation index results include that both the effluents cause significant corrosion.

ACKNOWLEDGEMENTS:

We express our gratitude to UGC(WRO) Pune and BCUD University of pune, who have financially supported through research projects for their kind help.

REFERENCES

1)Chemical and biological methods for water pollution studies by Trivedy R.K. and Goel P.R.

2)Standard methods of water and waste water analysis by A.K. De.

3)Journal of Environmental Science and Engineering, Jan 2007, volume 49 No. 1. Published by - National Environmental Engineering Research Institute Nagpur 440020 INDIA.

4)Elements of Environmental Chemistry by H.V.Jadhav. Himalaya Publishing House

5) Aqua Milieu Pty Ltd. Trading as Enviroflow, Enviroflow Biofilter Wastewater Treatment Plant Brochure.

6) Del Porto D., SPC Workshop on The Soltran II Non Polluting Biological Toilet and Wastewater garden, Suva, Fiji, 25 November 1996.

7) Enviro-Technology Inc., 1998. Cromaglass Wastewater Treatment Systems

8) Environment Equipment Pty Ltd. Rota-Loo Composting Toilet Brochure.

9) Environment Equipment Pty Ltd. Biolet Composting Toilet Brochure.

10) Gough I., Langford M., and Gough A. 1999. The Hybrid Toilet System: General Principles & System Design Drivers. Published by Lanfax Laboratories, Armidale NSW.

11) Gough Plastics Australia, The Hybrid Toilet System Brochure.

12) Khan, A.R. 1995. Appropriate Wastewater Treatment Processes for N-WFP, Pakistan, Master of Science Research of Loughborough University of Technology.

13) Loetscher T., 1998. SANEX Sanitation Expert Systems

14) Ludwig, S. 1998. DEWATS Decentralised Wastewater Treatment in Developing Countries, Bremen Overseas Research and development Association, Bremen.

15) Mann, H.T., Williamson, D., 1982. Water Treatment and Sanitation, Intermediate Technology Publications 1973, 1979, 1982., Printed in England by The Russell Press Ltd., Nottingham.

Golden Research Thoughts | Volume 3 | Issue 7 | Jan 2014

7

16) Mara, D. Sewage Treatment in Hot Climates, A Wiley Interscience Publication, John Wiley
17) Neptune Pacific Ltd., On-site and Small Community Sewage Management with the N-DN Biofilter Treatment Plant
18) Pickford, J., 1991. The Worth of Water. Technical Briefs on health, water and sanitation. Intermediate Technology Publications 1991.103-105 Southampton Row, London, Printed by Russell Press Ltd., Nottingham.

M. D. Sangale Head and Associate professor, Department of Chemistry, A.A.College, Manchar, Dist-Pune(M.S.)

8

Publish Research Article International Level Multidisciplinary Research Journal For All Subjects

Dear Sir/Mam,

We invite unpublished Research Paper,Summary of Research Project,Theses,Books and Book Review for publication,you will be pleased to know that our journals are

Associated and Indexed, India

- International Scientific Journal Consortium
- * OPEN J-GATE

Associated and Indexed, USA

- EBSCO
- Index Copernicus
- Publication Index
- Academic Journal Database
- Contemporary Research Index
- Academic Paper Databse
- Digital Journals Database
- Current Index to Scholarly Journals
- Elite Scientific Journal Archive
- Directory Of Academic Resources
- Scholar Journal Index
- Recent Science Index
- Scientific Resources Database
- Directory Of Research Journal Indexing

Golden Research Thoughts

258/34 Raviwar Peth Solapur-413005,Maharashtra Contact-9595359435 E-Mail-ayisrj@yahoo.in/ayisrj2011@gmail.com Website : www.aygrt.isrj.net