ISSN 2231-5063

Impact Factor: 2.2052 (UIF) Volume-3 | Issue-11 | May-2014

SOME PARAMETERS DOMINATION OF THE INDEPENDENT INTUITIONISTIC FUZZY GRAPH

P.Gladyis, R.Rohini and C.V.R Harinarayanan

Assistant Professor of Mathematics, Bharathidasan University Model College, Aranthangi, Tamil Nadu, India Assistant Professor of Mathematics, Govt. Arts College, Pudukkottai, Tamil Nadu, India Research Supervisor & Assistant Professor of Mathematics, Govt. Arts College, Paramakudi, Tamil Nadu, India

Abstract: A non –empty set $D \subset V$ of a graph G is a dominating set of G if every vertex in V-D is adjacent to some vertex in D. The domination number $\gamma(G)$ is the minimum cardinality taken over all the minimal dominating sets of G. If V-D contains a dominating set D^{I} then D^{I} is called the Inverse dominating set of G w.r.to D. The Inverse dominating number $\gamma'(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. An independent dominating set D of a IFG G=(V,E) is a split independent dominating set if the induced fuzzy subgraph < V-D > is disconnected .The minimum fuzzy cardinality of a split independent dominating set is called a split independent domination number and is denoted by $\gamma_{spiif}(G)$.

Key Words: Split Independent Dominating Set, Intuitionistic Fuzzy Graph, Independent Strong (weak) Dominating Set, Efficient Independent Dominating Set.

Introduction

A non –empty set $D \subset V$ of a graph G is a dominating set of G if every vertex in V-D is adjacent to some vertex in D. The domination number (G) is the minimum cardinality taken over all the minimal dominating sets of G. If V-D contains a dominating set D¹ then D¹ is called the Inverse dominating set of G w.r.to D. The Inverse dominating number $\gamma^1(G)$ is the minimum cardinality taken over all the minimal inverse dominating sets of G. Two vertices in an IFG, G=(V,E) are said to be independent if there is no strong arc between them. A subset S of V is said to be Independent set of G if $\mu_2(u,v) < \mu_2^{\infty}(u,v)$ and $\gamma_2(u,v) < \gamma_2^{\infty}(u,v)$ for all $u,v \in S$. A dominating set D of a fuzzy graph G=(V, E) is a split dominating set if the induced fuzzy subgraph $H=(\langle V-D\rangle, V^1, E^1)$ is disconnected. The split domination number $\gamma_2(G)$ of G is the minimum fuzzy cardinality of a split dominating set. A dominating set D of a Intuitionistic fuzzy graph G=(V,E) in a split dominating set if the induced fuzzy sub graph H=(<V-D>,V¹,E¹)is disconnected. The minimum fuzzy cardinality of a split dominating set is called a split domination number and is denoted by $\gamma_2(G)$. An arc (vi,vj) of an IFG G is called an strong arc if $\mu_2(vi,vj) \leq \mu_1(vi) \wedge \mu_1(vj)$ and $\gamma_2(vi,vj) \leq \gamma_1(vi)\Lambda\gamma_1(vj)$. Let G=(V,E) be a IFG. Then the cardinality of G is defined to be $|G| = |\sum_{vi \in V} [(1+\mu_1(vi)-\mu_1(vi))]$ $\gamma_1(vi))/2] + \sum_{vi \in V} [(1 + \mu_2(vi, vj) - \gamma_2(vi, vj))/2] \mid . \text{ The vertex cardinality of } G \text{ is defined by } \mid V \mid = \sum_{vi \in V} [(1 + \mu_1(vi) - \gamma_2(vi, vj))/2] \mid .$ $\gamma_1(vi)/2$] for all $vi \in V$. The edge cardinality of G is defined by $|E| = \sum_{vi \in V} [(1 + \mu_2(vi, vj) - \gamma_2(vi, vj))/2]$ for all $(vi, vj) \in V$. E. The vertex cardinality of an IFG is called the order of G and is denoted by O(G) . The cardinality of the edges in G is called the size of G, it is denoted by S(G).

Split Independent Dominating Set in IFG

An independent dominating set D of a IFG G=(V,E) is a split independent dominating set if the induced fuzzy subgraph< V-D > is disconnected .The minimum fuzzy cardinality of a split independent dominating set is called a split independent domination number and is denoted by $\gamma_{\text{spiif}}(G)$.

ISSN 2231-5063

Impact Factor: 2.2052 (UIF) Volume-3 | Issue-11 | May-2014

Example

Let G=(V,E) be a fuzzy graph with $V=\{a, b, c, d, e\}$, the membership functions of vertices and edges are given below

```
\begin{split} &(\mu_1(a),\gamma_1(a))=(0.3,0.7),\,(\mu_1(b),\gamma_1(b))=(0.3,0.6)\\ &(\mu_1(c),\gamma_1(c))=(0.3,0.4),\,(\mu_1(d),\gamma_1(d))=(0.6,0.4)\\ &(\mu_1(e),\gamma_1(e)=(0.7,0.3)\ and\\ &(\mu_2(ab),\gamma_2(ab))=(0.2,0.4),\,(\mu_2(ac),\gamma_2(ac))=(0.3,0.7)\\ &(\mu_2(ad),\gamma_2(ad))=(0.2,0.4),\,(\mu_2(bc),\gamma_2(bc))=(0.3,0.5)\\ &(\mu_2(bd),\gamma_2(bd))=(0.3,0.4),\,(\mu_2(ce),\gamma_2(ce))=(0.2,0.4)\\ &(\mu_2(de),\gamma_2(de))=(0.6,0.4). \end{split}
```

Here strong arcs are e₁,e₂,e₅ and e₄

Independent dominating set in IFG is D=(a, b, e}, V-D = {c , d} For every $v \in V$ -D their exists $u \in D$ and V-D is induced intuitionistic fuzzy subgraph and it is independent and disconnected. That is two isolated vertices c and d. The minimum intuitionistic fuzzy cardinality of a split independent dominating set is called split independent domination number $\gamma_{spiir}(G) - 1.35$

Independent Strong (Weak) Dominating Set in IFG

A SIFD – set (WIFD-set) S of an IFG G is said to be an independent strong (weak) dominating set of G if it is independent. The minimum cardinality of an independent strong (weak) dominating set is called the independent strong (weak) intuitionistic fuzzy dominating number and it is denoted by $\gamma_{isif}(G)$, $\gamma_{iwif}(G)$.

Example

Let G=(V,E) be a fuzzy graph with $V=\{a,\,b,\,c,\,d,\,e\}$, the membership functions of vertices and edges are given below

```
\begin{split} &(\mu_1(a),\gamma_1(a))=(0.4,0.5),\,(\mu_1(b),\gamma_1(b))=(0.4,0.6)\\ &(\mu_1(c),\gamma_1(c))=(0.2,0.6),\,(\mu_1(d),\gamma_1(d))=(0.5,0.6)\\ &(\mu_1(e),\gamma_1(e)=(0.3,0.4),\,(\mu_1(f),\gamma_1(f))=(0.2,0.7)\\ &(\mu_1(g),\gamma_1(g))=(0.3,0.6)\text{ and}\\ &(\mu_2(ab),\gamma_2(ab))=(0.4,0.5),\,(\mu_2(bc),\gamma_2(bc))=(0.2,0.6)\\ &(\mu_2(bd),\gamma_2(bd))=(0.4,0.6),\,(\mu_2(cd),\gamma_2(cd))=(0.2,0.4)\\ &(\mu_2(de),\gamma_2(de))=(0.3,0.4),\,(\mu_2(ef),\gamma_2(ef))=(0.2,0.6)\\ &(\mu_2(fg),\gamma_2(fg))=(0.2,0.7). \end{split} For an IFG in example \gamma_{isif}(G)- 0.65 Since\{b,f\} is a independent strong dominating set.
```

Efficient Independent Dominating Set in IFG

Let G=(V,E) be a IFG. A set $F \subseteq V$ is an efficient independent dominating set if F is independent dominating set and if for every $v \in V$ -F then $N[v] \cap F=1$.

The efficient independent intuitionstic fuzzy domination number is the minimum cardinality among all efficient independent domination set in G and is denoted by $\gamma_{eiif}(G)$.

ISSN 2231-5063

Impact Factor: 2.2052 (UIF) Volume-3 | Issue-11 | May-2014

Example

Let G=(V,E) be a fuzzy graph with $V=\{a, b, c, d, e\}$, the membership functions of vertices and edges are given below

```
\begin{split} &(\mu_1(a),\gamma_1(a))=(0.2,0.7),\,(\mu_1(b),\gamma_1(b))=(0.3,0.6)\\ &(\mu_1(c),\gamma_1(c))=(0.4,0.4),\,(\mu_1(d),\gamma_1(d))=(0.6,0.4)\\ &(\mu_1(e),\gamma_1(e)=(0.7,0.1),\,\text{ and}\\ &(\mu_2(ab),\gamma_2(ab))=(0.2,0.7),\,(\mu_2(ac),\gamma_2(ac))=(0.2,0.7)\\ &(\mu_2(ad),\gamma_2(ad))=(0.2,0.7),\,(\mu_2(bc),\gamma_2(bc))=(0.3,0.6)\\ &(\mu_2(bd),\gamma_2(bd))=(0.3,0.6),\,(\mu_2(ce),\gamma_2(ce))=(0.4,0.4)\\ &(\mu_2(de),\gamma_2(de))=(0.5,0.4).\\ &F=\{b,g,h\}\\ &\gamma_{eiif}(G)=1.45 \end{split}
```

Inverse dominating set in IFG

Let D be a minimum dominating set of an IFG of G if V-D contains a dominating set w.r.to $D^{'}$ of G. then $D^{'}$ is called an inverse dominating set w.r to D, The inverse domination number of an IFG G is the minimum cardinality of an inverse dominating set and it is denoted by $\gamma_{if}^{1}(G)$

Inverse independent dominating set in IFG

Let $D \subseteq V$ be a minimum independent dominating set of an IFG of G if V-D contains an independent dominating set D^1 of G then D^1 is called an inverse independent dominating set w.r.to D. The inverse independent domination number of an IFG G is the minimum cardinality of an inverse independent dominating set and it is denoted byy $\inf_{i \in I} G$

Example

Let G=(V,E) be a fuzzy graph with $V=\{a, b, c, d, e\}$, the membership functions of vertices and edges are given below

```
\begin{split} &(\mu_1(a),\gamma_1(a))=(0.3,0.4),\,(\mu_1(b),\gamma_1(b))=(0.4,0.4)\\ &(\mu_1(c),\gamma_1(c))=(0.5,0.2),\,(\mu_1(d),\gamma_1(d))=(0.7,0.2)\\ &(\mu_1(e),\gamma_1(e))=(0.3,0.5),\,(\mu_1(f),\gamma_1(f))=(0.3,0.4)\\ &(\mu_1(g),\gamma_1(g))=(0.3,0.4)\,\,\mathrm{and}\\ &(\mu_2(ad),\gamma_2(ad))=(0.3,0.7),\,(\mu_2(bd),\gamma_2(bd))=(0.4,0.4)\\ &(\mu_2(cd),\gamma_2(cd))=(0.4,0.2),\,(\mu_2(de),\gamma_2(de))=(0.3,0.5)\\ &(\mu_2(bd),\gamma_2(bd))=(0.3,0.6),\,(\mu_2(ef),\gamma_2(ef))=(0.2,0.4)\\ &(\mu_2(eg),\gamma_2(eg))=(0.2,0.5),\\ &D^1_{=}\{a,b,c,e\}\\ &\gamma_{iif}^1(G)=2 \end{split}
```

RESULTS

Theorem

Let G be a IFG, then $\gamma_{isif}(G) \leq \gamma_{iwif}(G)$

Proof

Let S,W be minimal strong and weak dominating set respectively.

Let $d_N(u) = \Delta_N(G)$ & $d_N(v) = \delta_N(G)$ note that V-N(u) is a strong dominating set & V-N(v) is a weak dominating set of G

Theorem

For any graph IFG, $\gamma^{-1}(G) \leq \beta_0(G)$

Proof

Let D be a minimum dominating set of G. Let S be a maximal independent set in <V-D>.we now consider the following two case

Case(i):

Suppose $V - D - S = \phi$

Then V-D=S is an independent inverse dominating set of G

Thus $\gamma^{-1}(G) \leq |V-D| = |S| \leq \beta_0(G)$

Case(ii):

Suppose $V - D - S \neq \phi$

Then every in V - D - S is adjacent to at least one vertex in S

If every vertex in D is adjacent to at least one vertex is S, then S is an inverse dominating set of G.

Otherwise, let $D^1 \subset D$ be a set of vertices of S. since D is a minimum dominating set, every vertex in D^1 must be atleast one vertex in V- D-S. Let $S^1 \subset V - D - S$ be such that every vertex of D^1 is adjacent to at least one vertex in S^1 , clearly $\mid S^1 \mid \leq \mid D^1 \mid$ and $S \cup S^1$ is an inverse dominating set,

Thus, $\gamma^{-1}(G) \le |S \cup S^1| \le |S \cup D^1| \le \beta_0(G)$.

CONCLUSION

In this paper we have introduce the concept of Split independent dominating set in Intuitionistic fuzzy graph, Independent strong (weak) dominating set in Intuitionistic fuzzy graph , Inverse dominating set in Intuitionistic fuzzy graph . Some interesting results related with the above are proved . Further, the authors proposed to introduce new dominating parameters in Intuitionistic fuzzy graph and apply these concepts to Intuitionistic fuzzy graph models.

REFERENCES

- 1. Ameenal Bibi K and R.selvakumar, The inverse split and Non-split Domination in Graphs, International Journal of computer Application (0975-8887) Volume 8-No . 7 October- 2010.
- 2. Atanassov K.T. Intuitionistic fuzzy sets: Theory and applications, New York, 1999.
- 3. Ayyaswamy .S and Natarajan .C, strong (weak) domination in fuzzy graphs,International Journal of Computational and Mathematical Science,2010.
- 4. Bhattacharya, P., some remarks on fuzzy graphs, pattern Recognition Letters 6: 297-302,1987.
- 5. Karunambigai G, R.Parvathi and R.Bhuvaneswari, Constant Intuitionistic fuzzy graphs, NIFS 17(2011) 1,37-47.
- 6. Kulli V.R, Theory of domination in Graphs, Vishwa International Publications 2012.

Impact Factor: 2.2052 (UIF) Volume-3 | Issue-11 | May-2014

- 7. Nagoor A Gani and S.Anupriya, split domination on Intuitionistic fuzzy graph, Advances in computational Mathematics and its Application (ACMA) Vol.2.No.2,2012, ISSN 2167-6356.
- 8. Somasundaram, A., Somasundaram, S., 1998. Domination in fuzzy graphs –I, Pattern Recognition Letters, 19, pp. 787-791.
- 9. Somasundaram, A.,2004, Domination in Fuzzy Graph-II, Journal of Fuzzy Mathematics.
- 10. Vinothkumar N and G.Geetha Ramani, Some Domination Parameters of the Intuitionistic fuzzy Graph and its Properties. MSC 2010 codes-05c72,05c69.