
Golden Research Thoughts 

Vol -2 , ISSUE –6, Dec 2012                                                         

ISSN:- 2231-5063                                                                                                   Available online at www.aygrt.org 

 

1 
 

    

GRT
                                                                                

 

A PURELY SEQUENTIAL PROCEDURE FOR FIXED WIDTH CONFIDENCE INTERVAL  
FOR THE PARAMETER OF A DENSITY WHO’S LIMITS DEPEND UPON THE PARAMETER 

 
 

H. S. PATIL 
 

Department of Statistics, S.B.Zadbuke Mahavidyalaya,  Barsi, Maharashtra, India.   
 

 

ABSTRACT: In the literature, an extensive work on sequential fixed width confidence interval 

(CI) for the parameter of U (0,  model is available. Here the upper limit depends on the 
parameter. In this article we propose fixed width (1-α) level sequential CI for the parameter of a 
density whose both limits depend upon the parameter. 
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1. INTRODUCTION      

Sequential estimation procedures for the parameter of U(0,   distribution  have  been 
studied by many authors, for examples Graybill and Connell (1964), Cooke (1971, 1973), 
Govindarajulu (1997,1999). Akahira and Koike (2005) have considered the problem of finding 

(1-α) level fixed width confidence interval (CI) for in U(distribution,  where is 

unknown and independent of Recently Koike (2007) has generalized this for a location-scale 

family of distribution with a finite support on the interval (aa ‘a’ is finite known 

positive numberFor further details on sequential estimation one may refer to Ghosh et 
al.(1997). 

In this article we propose sequential procedure for (1-α) level fixed width CI for the 

parameter  of a density whose limits depend upon  and are strictly increasing continuous 

functions of  Similar results can be obtained when both the limits are strictly decreasing 

continuous functions of  However these conditions can be relaxed to some extent (see 
remark 3.2). 

Section 2 contains some related preliminary results. In Sections 3 we propose a purely 

sequential procedure In Section 4 as an illustration, for U(m distribution with m known, by 
simulation it is verified that the desired level is attained and also as expected, the ASN increases 

when  and/or mincrease. 
 

2. PRELIMINARY RESULTS: 
Let the probability density function (p.d.f) of a random variable X be 
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f(x,


 

         otherwise,                                  0,

R,Θθ);b(θx) a(θfor, g(x)/h( θ
   

 

where g(x)  0 be a known function,  h() = 
) θ b(

) θ a(

dxg(x)  be positive and finite. In the following for 

simplicity we assume that the known functions a(), b() are strictly increasing and continuous.  
The model (2.1) is appropriate in a situation similar to the following. Consider an 

agricultural experiment where we want to study the impact of unknown soil fertility gradient  
of a plot, on the yield/growth of a certain crop which is an observable random variable, say X, 

whose range depend on , say a( ) and b( ). It is but natural to assume that both a( ) and b( 

) are continuous strictly increasing functions of . Being assumed that  is the only unknown 
entity, the random variable X can be modeled by (2.1). The problem of interest is to find a fixed 

width (1-α) level CI for the parameter . 

Let θ= inf{},θ = sup{} and 

a = inf {a():  }, a = sup{a() :}. 

Similarly b , b are defined. It is to be noted that the sample space is a subset of (

a , b ), 

whatsoever be θ  (θ , θ ). Hence for t  (

a , b ) we define inverse function a

-1
(t)  =  θ  or θ  

according as  t  

a  or  t  a   and a

-1
(t) = w, where a(w) = t  for 


a  < t < a . Note that such a 

number w exists, since a() is continuous. Similarly b
-1

(t) is defined. Since a() < b(), we have 

b
-1

(a()) <   and  < a
-1

(b()). Thus we have b
-1

(

a  ) < b

-1
(a()) <   < a

-1
(b()) < a

-1
( b ). Hence 

(b
-1

(

a ), a

-1
( b )) is a trivial range for .  In the following we assume that g(x) > 0 for 


a  < x < b .  

For 

a  < x < b , define G(x) = 

x

0 

dz g(z) which is independent of . Let Y = G(X), one to 

one transformation, then the p.d.f of Y is given by  
 

 f(y, ) =


 

           otherwise,                 0,

RΘθ;θΒy  ) A(θ        ), 1/H(θ
    (2.2) 

 

where A() = G(a(B(G(b(and H( = B(A(). On the similar line as above, we can 

define

A , A , B , B  and inverse functions A-1(t) as well as B-1(t) for every t  (


A , B ). We note 

that G(x) is continuous, strictly increasing (as g(x) > 0). Hence A(), B() are also continuous, 

strictly increasing and H(is also positive. Note that the density of Y = G(X) is of the form (2.1) 
with g(.) = 1. Hence if g(x) ≠ 1 then by considering the p.d.f of G(X), the g(.) reduces to 1. Since Y 
= G(X) is a one to one transformation, there is no loss of information. 

Let Y1, Y2, …, Yn be independent and identically distributed (i.i.d) random variables with 

p.d.f given by (2.2). Let Y(1 n) = min(Y1, Y2, …, Yn) and Y(n n) = max (Y1, Y2, …, Yn). Since A() < Y(1 n) < Y(n 

n) < B(), we have B-1( Y(n n) ) <   < A-1( Y(1 n) ). Further as the functions A(), B() are strictly 
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increasing and continuous, B-1(Y(n n) ) increases to  a.s and A-1(Y(1 n)) decreases to   a.s. Thus (B-

1(Y(n n)), A
-1(Y(1 n))) is a random interval that a.s ‘contains  and the length decreases to zero’. 

Since the functions A(), B() are continuous strictly increasing and  A() < B(), we get 


A ≤ B  and A ≤ B . Further the observations fall in the interval (


A , B ) whatsoever θ  (θ , θ ). 

If A ≤ B  and all observations fall in the interval [ A , B ] then we get B-1(Y(n n)) = θ  and A-1(Y(1 n)) 

= θ , otherwise B-1(Y(n n)) > θ  and A-1(Y(1 n)) < θ . Hence to have a fixed width CI for both B-1(Y(n 

n)) and A-1(Y(1 n)) must be finite which implies  both θ  and θ  must be finite. This can be 

described as below. 
 

 
 

Figure 2.1: Nature of observations. 
 

In the following for simplicity we assume that θ  and θ  are finite. If A-1( Y(1 n)) < θ  + d or 

B-1( Y(n n)) > θ  + d then ( θ , A-1( Y(1 n))) or (B-1( Y(n n)), θ ) constitute a 100% CI for  of width at most 

d. Hence in the following we consider the case A-1(Y(1 n)) ≥ θ  + d and B-1(Y(n n)) ≤ θ  + d.  

Let ((Y(n n)), 
(Y(n n)) + d) be a CI for of width d. The coverage probability of this 

interval is  
 

P((Y(n n)) < ≤ (Y(n n)) + d )  

= P(Y(n n) < B(d ≤ (Y(n n))) 

= P(d ≤ (Y(n n))) (since Y(n n) < B(almost surely(a.s)). 

= P(max{d, θ }≤ (Y(n n))) (since θ  ≤ B-1 (Y(n n)) a.s. 

= 










θdθfor      ) θ)(YP(B

θdθfor d)θ)(YP(B

n)(n

1-

n)(n

-1

 

=








θdθfor        1

θdθfor d))B(θP(Y n)(n
                                 (2.3)                                                          
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Thus if θ < θ +d then the coverage probability of ((Y(n n)), 
(Y(n n)) + d) is 1. Now if θ 

 θ +d the coverage probability of ((Y(n n)), 
(Y(n n)) + d) is 

 

      P(Y(n n)  B(d)) = P(U(n n)  [B(d)-A(θ)]/H(θ)) 

   = 




















 ). A(θ  d)-B(θ if        
) H(θ

) A(θ-d)-B(θ
1

), A(θ   d)-θ B(  if1
n

     (2.4)    

 
where U(n, n) is the largest of n i.i.d observations from U(0, 1). Thus from (2.3) and (2.4), 

for  each n = 1, 2, …, the coverage probability of ((Y(n, n)), 
(Y(n, n)) + d) is  1 if θ < θ +d or 

B(d)  A(θ) and it is strictly increasing in n to 1 for B(d) > A(θ) and θ ≥ θ  + d.  

When B(d) > A(for the coverage probability P((Y(n n)) <  (Y(n n)) + d ) to be 
at least  1-α , we must have, 

 

1 – [(B(- d)- A()/H(n  1-α, 
 

which implies    
 

n > 








 

) H(θ

) A(θ - d)B(θ
log

) log(α
. = n (           (2.5) 

 

Thus for the coverage probability P((Y(n n)) <  (Y(n n)) + d) to be at least  1-α,  the 

least fixed sample size n* (as a function of 


 ) is    
 

       n* := 
















































 


             dθθor  ) A(θ)  d(θBif1   

                    

    dθθ  and  ) A(θd)(θBif                 1

) H(θ

) A(θd)B(θ
log

) log(α

      

 
where [x] indicates the least integer greater than or equal to x. 
 
3. A PURELY SEQUENTIAL PROCEDURE 

The advantages of sequential procedure are well known. Here by collecting observations 
one by one and by considering the accumulated information after each one, it could be possible 
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to attain the desired precision with lesser number of observations. Also for any k, we have B-

1(Y(k k) ) ≤ ≤A-1( Y(1 k )) a.s and hence in the following we propose a purely sequential procedure 

depending on  values of  θ ,  θ , A and B .  

 

3.1 Both  θ  and θ  are finite,  whatever may be A and B  

Let Y1, Y2, … be i.i.d random observations from (2.2). Stop after N observations, where N 
is the least integer n (≥ 1) such that 

 
(i) A-1( Y(1 n) ) - B

-1( Y(n  n ) ) ≤ d,  
     OR 

(ii) n ≥ 



































 

) H(θ

) A(θ-d)-B(θ
log

) log(α
 

) A(θd)-B(θ

)(YAθ)(YB

Sup

n) (1

1

n)(n

1
 = n(

~

nθ ), say.     (3.1) 

 
Since B-1(Y(n n)) and A-1(Y(1 n)) are finite, so supremum is finite and is attained at some 

point 
~

nθ , say. Then the above stopping rule can be described as, N is the least integer n (≥ 1) 

such that  
 

  
















































) θH(

)θA(d)θB(
log

α) log(
  n  ORd)Y (B -)Y (A

~

n

~

n

~

n

n)(n  

1-

n)  (1

1-     (3.1*) 

 
and propose the CI  
 

      C.I.N = ((Y(N N )), minA-1(Y(1 N )),
(Y(N N)) + d}).       (3.2) 

 
In the following we shall show that the rule N is closed and the coverage probability of 

C.I.N is at least 1 – α. 

  

Theorem 3.1.1: The stopping rule N is closed. 

Proof: Let N1 (≥ 1) be a stopping random variable corresponding to stopping rule A
-1

(Y(1 n)) -




(Y(n n)) ≤ d. Then P(N> k) ≤ P(N1> k). As B
-1

(Y(k k)) increases to  and A
-1

(Y(1 k)) decreases to 

  a.s, we  have A
-1

( Y(1 k) ) – B
-1

( Y(k k) ) decreases to 0 a.s as k tends to . Hence P( N1 > k) = 

P[A
-1

(Y(1 k)) – B
-1

(Y(k k)) > d] tends to 0 as k tends to . Thus the stopping rule N1 is closed. 

Hence stopping random variable N is closed.  

Theorem 3.1.2: The coverage probability of C.I.N, defined in (3.2), is at least1 – α. 
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Proof: Let 0 be the true value of the parameter. Then for each n ≥ 1, it is evident that   B
-1

(Y(n n ) 

) ≤ ≤A
-1

( Y(1 n )).  

For B(d) ≤ A(0), there exist Y1 such that  B
-1

(Y1 ) ≤ ≤A
-1

( Y1) that is N =1 a.s and 

C.I.N has coverage probability 1. 

 f B(d) > A(0) and A-1( Y(1 N) ) - B
-1( Y(N  N ) ) ≤ d  then C.I.N = ( (Y(N N ), minA-1(Y(1 N 

)),
(Y(N N)) + d}) = ((Y(N N )), A

-1(Y(1 N )) ) is a 100% CI for 

f B(d) > A(0) and A-1( Y(1 N) ) - B
-1( Y(N  N ) ) > d then by definition of N sampling is not 

stopped by condition (i), but by (ii) of (3.1), we have N ≥  n(
~

nθ ) > n(0), where n(0) is as 

defined in (2.5). Moreover for each Pθ{(Y(n  n )) <  <(Y(n  n )) + d} = 1 – [(B(- d)- 

A()/H(n  is increasing in n, we have, 

 
0θ

P [0 Є C.I.N] ≥ 
0θ

P [0 Є C.I.n(

~

θ n ) ] ≥ 
0θ

P [0 Є C.I.n ( 0θ ) ] ≥ 1- α.  

In the above the last inequality follows from the definition of n(0) defined in (2.5). Hence C.I.N 

has coverage probability1- α.  
 

3.2: One of θ  and θ  is not finite  and A  ≤ B 

If any one of the θ  and θ  is not finite  and A  ≤ B  then for the interval (B-1(Y(n n)), A
-1(Y(1 

n))) to have finite length, one  need to continue sampling  
 

  “until Y(1 n) < A    if θ  = ∞, or  
 

 until Y(n n) >  B   if θ  = - ∞ as the case(s) may be.”            (3.3) 

 
Let N2 be the stopping random variable corresponding to (3.3). Now stop if condition 

(3.1*) holds, otherwise continue sampling by taking an additional observation until  (3.1*) holds. 
Let N be the total number of observations. Then in this case, the stopping random variable will 
be max(N2, N) = N3 (say).  

As n tends to ∞, Y(n n) tends to B() > B  and Y(1 n) tends to A() < A . So condition (3.3) 

holds a.s. That is N2 is closed. Also by theorem 3.1, N is shown to be closed. Hence N3 is also 
closed. 

Since N3 ≥ N and by theorem 3.2, C.IN has coverage probability at least (1-α), C.IN3 also 
has coverage probability at least (1-α). 

 

 3.3: One of θ  and θ  is not finite and A  > B 

 

 In this case B-1(Y(n n)) > θ , A-1(Y(1 n)) < θ  and the procedure described in Subsection 3.1 

holds. 
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Remark 3.1: One may take ((Y(n n)) - d, (Y(n n))) as a CI for of width d. Then by 

appropriate modifications, the (1-α) level CI for will be  ( max(Y(N N )),  A-1(Y(1 N )) - 

d},(Y(1 N)) ).  
 
Remark 3.2: For the results of Section 2 and 3 to hold good, some of the assumptions in the 

model (2.1) can be relaxed to some extent, as indicated in the following. 

 

 (i) The condition of continuity can be relaxed. In this case define inverse function a
-1

(t)  as  θ ,  

inf{: a()  t} or θ  according as  t  <

a ,  


a ≤   t  ≤ a   or  t  > a    and  define b

-1
(t) as θ , sup{: 

b()  t}  or θ   according as t <b , b  ≤ t ≤  b  or  t > b . These inverse functions are defined so as 

to minimize a
-1

(t1) - b
-1

(t2), the length of the interval (b
-1

(t2 ), a
-1

(t1)),  for any  t1,  t2 such that  

a  

 t1  <  t2   b .  

(ii) If a() and b() are not strictly increasing but non decreasing functions and at each , at least 

one of them is strictly increasing (otherwise identification problem would have arise). In this 

case as a technical requirement it is enough to assume that for given fixed width d  ( > 0), there 

exist  ( > 0)  such that a
-1

( a() +  ) -  b
-1

( b() -  ) < d  for all .  

For example in case of U(0, );  > 0 model, a
-1

(t) = 0 or    according as t ≤ 0 or t > 0 

and b
-1

(t) = 0 or t according as t < 0 or t ≥ 0. Thus the 100% CI will be (X(n n), ) for all n ≥ 1 and 

stopping rule (3.2
*
) can not be used. In such of the cases, the above assumption does not hold in 

the sense that the requirement is necessary.  

 

4. ILLUSTRATION AND NUMERICAL EVALUATION  

For an illustration of the proposed purely sequential procedure, we consider 

U(mmodel with m (>1) known and 0.  For U(m distribution, we have g(.) = 1, θ  = 

0, θ  = ∞, A(andBmHere (Y(1n)) = Y(1 n),, B-1(Y(n n)) = Y(n n)/mand H(m-

1)which is positive.  Also we have 

A = B = 0 and A = B = ∞. A purely sequential procedure 

consists of taking observations one by one and stop after N observations, where N is the least 
integer n (≥1) such that 

 
  (i) Y(1 n ) –Y(n  n )/m ≤ d,   
   

OR 

  (ii) n ≥ 





































1)θ-(m

md
1log

)log(α

1)md/(mθ

Yθ/mY

Sup

n)(1n)(n  

For > md/(m-1),  











1)θ-(m

md
1log

)log(α
 is increasing function of   and N is the least integer n (≥1)  
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such that   

   




































































1))md/(m1)(Y-(m

md
1log

)log(α
n OR d/mYY

n)  (1

n)(nn)(1
.  

 
where (Y(1 n) v  md/(m-1)) means max{Y(1 n), md/(m-1)}. The stopping rule in this case is max(N2, 

N) = N3 (say)  and the (1-) level CI for be (Y(N N)/m, min{Y(1 N3 ), Y(N3  N3)/m + d}).  

If were known then in this case the fixed sample size to attain the level (1 - ) is 

   n*:= 

















































d.θor   1)md/(mθ if1

d.θand1)md/(mθif1

1)θ-(m

md
1log

)log(α

          

 
where [x] denotes the least integer greater than or equal to x.  
 
         To verify the attainability of the coverage probability, in the following we carry out the 

simulation study for U(mmodel based on 10,000 iterations. Since all desired expression 

depend on and d through d/, in the following we fix d =1. The fixed sample size n*, the 

simulated ASN and coverage probabilities are tabulated for different values of m, α and 



Table 4.1.The entries are respectively n*, simulated ‘ASN’ and ‘coverage probability’ for purely 
sequential procedure when m = 2. 

α\θ 1 2 10 50 100 300 

0.01 1 
1 
1 

1 
2.78 
1 

22 
13.30 
0.9908 

113 
66.12 
0.9937 

228 
120.29 
0.9922 

689 
390.43 
0.9901 

0.05 1 
1 
1 

1 
2.45 
1 

14 
11.27 
0.9635 

74 
54.88 
0.9508 

149 
108.13 
0.9545 

448 
324.40 
0.9508 

01 1 
1 
1 

1 
2.17 
1 

11 
9.67 
0.9253 

57 
46.81 
0.9053 

114 
92.56 
0.9028 

345 
275.95 
0.9009 
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Table 4.2.The entries are respectively simulated n*, ‘ASN’ and ‘coverage probability’ for purely 
sequential procedure when m = 3 

α\θ 1 2 10 50 100 300 

0.01 1 
2.28 
1 

3 
4.61 
0.9972 

28 
20.90 
0.9925 

151 
101.72 
0.9917 

305 
202.72 
0.9914 

919 
601.64 
0.9909 

0.05 1 
2.30 
1 

2 
3.93 
0.9855 

18 
16.97 
0.9650 

98 
80.03 
0.9538 

198 
158.59 
0.9515 

598 
473.06 
0.9508 

0.1 1 
1.82 
1 

2 
3.47 
0.9664 

14 
14.01 
0.9263 

76 
66.70 
0.9123 

152 
132.18 
0.9099 

459 
392.75 
0.9017 

 
Remark 4.1 From Tables 4.1 - 4.2, it is clear that purely sequential procedure attains the desired 
level. 

Remark 4.2 As expected, the ASN increases when  and /or mincrease. 
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