Golden Research Thoughts ISSN 2231-5063 Impact Factor : 3.4052(UIF) Volume-4 | Issue-9 | March-2015 Available online at www.aygrt.isrj.org

PSEUDO IDEALS OF A $\ \Gamma$ -SEMI NEAR RING

S. J. Alandkar

Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]

Abstract: In this paper, the concept of pseudo ideal of a **r**-semi near ring is introduced and investigated some of its properties.

AMS Classification: 08A72, 03E72.

Key-words: I-semi-nearring, pseudo ideals of a I-semi-nearring.

§1. INTRODUCTION.

G. Pilz [4] studied Near rings and defined it as: if in a ring we ignore the commutativity of addition and one distributive law. The concept of Γ - ring was introduced by Nobusawa [2] and a generalization of the concept, Γ - near ring was introduced by Satyanarayana [8]. Further M. K. Rao [6] studied Γ -semir ring and then S. Pianskool at el [5] and N. K. Saha at el [7, 10] defined the generalization of Γ -semir ring and Γ - near ring as a Γ - semi-near rings and studied its properties. Various types of ideals in near rings and Γ - near ring are studied in articles [9, 11].

Berman G. and Silverman R. J.[1] have initiated a study of pseudo ideals of a near ring. A nonempty subset I of a near ring N is a left pseudo ideal of N if $(ni - n0) \in I$; a right pseudo

ideal of N if (in) \in I for all i \in I, n \in N and a pseudo ideal of N if it is both a left pseudo ideal and

a right pseudo ideal.

In this Paper, we introduce the concept of pseudo ideals of a Γ - semi near ring and study its properties. Throughout this paper M denotes a right Γ -seminear ring and we shall call it Γ -seminear ring only unless otherwise specified.

§2.1. Pseudo ideals of a Γ-seminear ring.

We begin with the following definition.

S. J. Alandkar, "PSEUDO IDEALS OF A r -SEMI NEAR RING", Golden Research Thoughts | Volume 4 | Issue 9 | March 2015 | Online & Print

Definition 2.1.1. Seminear ring:-A nonempty set N together with two binary operations '+' and '.' satisfying the following conditions, is said to be a seminear ring.

- i) (N, +) is a semigroup,
- ii) (N, \cdot) is a semigroup,
- iii) $(x+y)\cdot z = x\cdot z + y\cdot z$ for all $x, y, z \in N$.

Precisely speaking 'seminear ring' is a 'right seminear ring' here since every seminear ring satisfy one distributive law (left / right distributive law).

Every near ring is a seminear ring but every seminear ring need not be a near ring. For this we consider the following Example.

Example 1:-Let $N = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a$, b be nonnegative integers $\}$, (N, +, .) is seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (N, +) is a semigroup but not a group since additive inverse does not exist for all members of N.

Definition 2.1.2. Γ -near ring:-Let (M, +) be a group (need not be abelian) and Γ be a nonempty set. Then M= (M, +, Γ) is a Γ -near ring if there exists a mapping M× Γ ×M→M (the image of (x, α , y)→x α y) satisfying the following conditions :

i) $(M, +, \alpha)$ is a right near ring,

ii) $x\alpha (y\beta z) = (x\alpha y) \beta z$ for all $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Precisely speaking ' Γ -near ring' is a ' Γ -near ring'. Every near ring is a special type of Γ -near ring for singleton set Γ whereas every Γ -near ring a near ring for each member of Γ . See the following example.

Example 2: Let $G = Z_8 = \{0, 1, 2, ...7\}$, the additive group of integers modulo 8 and X= $\{a, b\}$. Define $m_i: X \rightarrow G$, $m_i(a) = 0$, $m_i(b) = i$, for $0 \le i \le 7$. such that $M = \{m_0, m_1, ..., m_7\}$ and let $\Gamma = \{g_0, g_1\}$ where $g_i: G \rightarrow X$ define by

 $g_{0} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \alpha & \alpha & \alpha & \alpha & \alpha & \alpha & \alpha \end{pmatrix}, \quad g_{1} = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \alpha & \alpha & \alpha & b & \alpha & \alpha & b \end{pmatrix}$

For m \in M, g \in Γ , x \in G. Take mgx = m(g(x)). Then (M, +, Γ) becomes Γ -near-ring.

Definition 2.1.3. F-seminear ring:-Let M be an additive semigroup and Γ be a nonempty set. Then a semigroup (M, α) is called a right Γ -seminear ring if there exists a mapping M × Γ × M \rightarrow M (denoted by (a, α , b) \rightarrow a α b) satisfying the conditions:

i) $(a+b) \alpha c = a\alpha c+b\alpha c$, ii) $a\alpha(b\beta c) = (a\alpha b)\beta c$

Golden Research Thoughts | Volume 4 | Issue 9 | March 2015

for all a, b, c \in M and $\alpha, \beta \in \Gamma$. Precisely speaking ' Γ -seminear ring' to mean 'right Γ -seminear ring'.

Every Γ -near ring is a Γ -seminear ring but every Γ -seminear ring need not be a Γ -near ring. For this we consider the following Example.

Example 3: Let $M = \{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} / a$, b be nonnegative integers $\} = \Gamma$, Then $(M, +, \Gamma)$ is Γ - seminear ring under the matrix addition and matrix multiplication. Here N is a seminear ring which is not a near ring since (M, +) is a semigroup but not a group since additive inverse does not exist for all members of M. Define $M \times \Gamma \times M \rightarrow M$ (denoted by $(a, \alpha, b) \rightarrow a\alpha b$) where $a\alpha b$ is matrix multiplication of a, α , b Then M is a Γ -seminear ring but not a Γ -near ring. Since (M, +) is a semigroup which is not a group.

Definition 2.1.4. Sub- Γ **-seminear ring:** Let M be a Γ -seminear ring. A nonempty subset M' of M is a sub- Γ -seminear ring of M if M' is also a Γ -seminear ring with the same operations of M.

Definition 2.1.5. Ideal of a Γ **-seminear ring:**-A subset I of a Γ -seminear ring M is a left (resp. right) ideal of a Γ -seminear ring M if I is a subsemigroup of M and rox \in I(resp. xor \in I) for all x, y \in I and r \in M, $\alpha \in \Gamma$.

If I is both left as well as right ideal then we say that I is an ideal of M.

Example 4: Consider the example of Γ -seminear ring (M, +, .) mentioned above. We have

 $I = \{ \begin{bmatrix} 2a & 2b \\ 0 & 0 \end{bmatrix} / a, b be nonnegative integers \}$ is an ideal of M.

Definition 2.1.6 : A subset I of M is a left (resp. right) pseudo ideal of M if

(i) (I, +) is a normal subgroup of (M, +),

(ii) $x\alpha a - x\alpha 0 \in I$ ($a\alpha x \in I$) for all $a \in I$, $x, y \in M$ and $\alpha \in \Gamma$.

(iii)

Example 5: Let (M, +) be an additive group such that $M = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations on M as shown in the following tables.

β	0	a	b	c	α	0	a	b	c	+	0	a	b	c
0	0	0	0	0	0	0	0	0	0	0	0	a	b	c
a	0	0	0	0	a	0	0	a	a	a	a	0	c	b
b	0	0	0	0	b	0	a	b	b	b	b	c	0	a
c	0	0	0	0	с	0	a	с	с	с	с	b	a	0

Then $(M, +, \Gamma)$ is a Γ -semi near ring and $I = \{0, a\}$ is a left as well as right pseudo ideal of M and thus I is a pseudo ideal of M. This is also an ideal of M.

Note that left pseudo ideal and right pseudo ideal are independent concepts. Examples are given below

Golden Research Thoughts | Volume 4 | Issue 9 | March 2015

Example 6: Let (M, +) be an additive group such that $M = \{0, a, b, c\}$ and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations on M as shown in the following tables.

α 0

a

+	0	a	b	c
0	0	a	b	С
a	a	0	С	b
b	b	с	0	a
c	c	b	a	0

+ 0 a b

0	a	b	с	ß	0	a	b	
0	0	0	0	0	0	<u> </u>	Õ	-
0	a	0	0	a	0	ů 0	Ů	
0	b	0	0	b	Ő	ů 0	ů 0	
0	c	0	0	c	0	0	0	
				•	•	•	•	

0

0

0

0 0

Here $I = \{0, a\}$ is a right pseudo ideal of M which is not a left pseudo ideal. Since b $\alpha a - b\alpha 0 = b \notin I$.

		-	-									
0	a	b	c	α	0	a	b	с	β	0	a	b
0	a	b	c	0	0	0	0	0	0	0	0	0
a	0	c	b	a	0	a	b	с	a	0	0	0
b	c	0	a	b	0	0		0	b	0	0	0
c	b	a	0	c	0	0	0	0	с	0	0	0

Here I = {0, a} is a left pseudo ideal of M which is not a right pseudo ideal. Since $a\alpha b = b \notin I$.

Theorem 2.1.7:- Every left (resp. right) ideal of M is a left (resp. right) pseudo ideal of M but converse need not be true.

Proof: Let $\langle M, +, \alpha \rangle$, $\alpha \in \Gamma$ be a left ideal of M. Let I be a left pseudo ideal in M. So, $\langle I, + \rangle$ is a normal subgroup of $\langle M, + \rangle$ and by definition $n.i - n.0 \in I$ for all $i \in I$ and $n \in M$. Hence I is a left pseudo ideal of M.

Now we prove that I is a right pseudo ideal of M.

Let I be a right ideal of M. So, $\langle I, + \rangle$ is a normal subgroup of $\langle M, + \rangle$ and by definition ian $\in I$ for all $i \in I$, $\alpha \in \Gamma$ and $n \in M$. Therefore I is right pseudo ideal of M.

Hence every left (right) ideal of M is a left (right) pseudo ideal of M but converse need not be true as shown in the following Example.

Example 7: Let $(M, +_4)$ be an additive group modulo 4 where $M = \{0, 1, 2, 3\}$ and $\Gamma = \{\alpha, \beta\}$ be a nonempty set of binary operations on M as shown in the following tables.

- 0	1	2	3	α	0	1	2	3	β	0	1	2
0	1	2	3	0	0	0	0	0	0	0	0	0
1	2	3	0	1	0	1	0	0	1	0	0	0
	3	0	1	2	0	2	0	0	2	0	0	0
_	0	1	2	3	0	3	0	0	3	0	0	0

Golden Research Thoughts | Volume 4 | Issue 9 | March 2015

Then $(M, +, \Gamma)$ is a Γ -near ring and I = {0, 2} is a pseudo ideal of M which is not an ideal. Since $3\alpha(1+2) - 3\alpha 1 = 3\alpha 3 - 3\alpha 1 = 0 - 3 = 3 \notin I$

In the following theorem we see that intersection of any family of left (resp. right) pseudo ideals of M is a left (resp. right) pseudo ideal of M respectively.

Theorem 2.1.8. Intersection of any collection of left (resp. right) pseudo ideals of M is a left (resp. right) pseudo ideal of M.

Proof: Let $I = \bigcap_{\lambda \in \Lambda} \{ I_{\lambda} / \lambda \in \Lambda \}$, where Λ is an index set be a family of left pseudo ideals of M. Since $I_{\lambda} \neq \emptyset$ for all λ and $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda} = I$. So, $I \neq \emptyset$.

Also intersection of any collection of normal subgroups in M being normal. We get $\langle I, + \rangle$ is a normal subgroup in $\langle M, + \rangle$. Let $i \in I$, where I_{λ} is a pseudo left ideals of M.

By definition of pseudo left ideals of M, $n\alpha i - n\alpha 0 \in I_{\lambda}$ for all $I_{\lambda}, \alpha \in \Gamma$. Hence, $n\alpha i - n\alpha 0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$ for all $I_{\lambda}, \alpha \in \Gamma$ and for all $n \in M$. Thus $n\alpha i - n\alpha 0 \in I$ for all $i \in I, \alpha \in \Gamma$ and for all $n \in M$. Thus $n\alpha i - n\alpha 0 \in I$ for all $i \in I, \alpha \in \Gamma$ and for all $n \in M$.

Now Let $I = \bigcap_{\lambda \in \Lambda} \{ I_{\lambda} / \lambda \in \Lambda \}$, where Λ is an index set} be a family of right pseudo ideals of M. Since $I_{\lambda} \neq \emptyset$ for all λ and $0 \in \bigcap_{\lambda \in \Lambda} I_{\lambda} = I$. So, $I \neq \emptyset$.

By definition of pseudo right ideals of M, $i\alpha n \in I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$. Hence, $i\alpha n \in \bigcap_{\lambda \in \Lambda} I_{\lambda}$ for all I_{λ} , $\alpha \in \Gamma$ and for all $n \in M$. Thus $i\alpha n \in I$ for all $i \in I$, $\alpha \in \Gamma$ and for all $n \in M$ i.e. I is a right pseudo ideal of M.

REFERENCES

- 1. **G.Berman and R. J. Silverman,** "Near-rings", American Mathematical Monthly, 66 (1959),23-34.
- 2. N. Nobusawa, On a generalization of the Ring Theory, Osaka, J. Maths.1(1964) 81-89.
- 3. **Y.S.Pawar and V.B.Pandharpure,** Ideals and Bi-ideals in near-rings.News Bull.Cal.Math.Soc.27 (4-6) (2004) 5-12.
- 4. G. Pilz, Near Rings, North-Holland, Amsterdam, 1983.
- 5. **S.Pianskool and P.Khachorncharoenkul,** Simple Γ- semi-near rings, Journal of Mathematics Research, Vol. 1, No. 2 (2009),124-129.
- 6. **M. K. Rao**, Γ- semiring I, Southeast Asian Bulletin of Maths., 19(1995) 49-54.
- 7. N. K. Saha, On Γ- seminear ring II, Bull. Calcutta Math. Soc. 79(6) (1987), 331-335.
- 8. **Bh. Satyanarayan**, A Note on Γ-Near-Ring, Indian Journal of Mathematics, B. N. Prasad Birth Centenary Commemoration, Vol.41, No. 3 (1990),427-433.
- 9. M. K. Sen, On pseudo-ideals of semi-group, Bull. Calcutta Math. Soc. 67 (1975), 109-114.
- 10. S. K.Sen and N. K. Saha, On Γ- seminear ring I, Bull. Calcutta Math. Soc., 78 (1986), no.3, 180-186.
- 11. **Wang Xue-Kuan**, On pseudoideals of division rings, Journal of Mathematical Research and Exposition (1988-02).

PSEUDO IDEALS OF A Г -SEMI NEAR RING

S. J. Alandkar Head and Associate Professor, Department of Mathematics & Statistics, Walchand College of Arts and Science, Solapur [M.S.]