

Golden Research Thoughts

QUASI K-IDEALS IN K-REGULAR Γ –SEMIRINGS

Alandkar S. J.

Head, Department of Mathematics, Walchand College of Arts & Science, Solapur.

Abstract. A Γ -semiring $(M, +, \alpha), \alpha \in \Gamma$ whose additive reduct is a Γ semilattice, is called a k-regular Γ -semiring if for each a \in M there exists $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x\alpha a = a\alpha x\alpha a$. Here we introduce quasi k-ideals in Γ -semirings and characterize the k-regular Γ -semirings by their quasi k-ideals.

Mathematics Subject Classi cation(2010). 16Y60.

Keywords: Quasi k-ideals, k-ideals, k-regular Γ -semirings,

1 INTRODUCTION.

The concept of quasi ideals in rings and semigroups is studied by Otto Steinfeld [15], [16], [17], [18]. Quasi ideal is a particular case of biideal. It is generalization of both left ideal and right ideal[19]. S. Lajos [9] discussed the generalization of this notion, namely the (m,n)-quasi ideal, He characterized the quasi ideals in regular semigroups [10]. Kapp [7] found that for an absorbant semigroup with 0 every \mathcal{H} -class together with 0 is a quasi ideal. Quasi ideals of different classes of semigroups and semirings have been characterized by many authors in [6], [8], [4].Von Neumann[11]defined a ring R to be regular if the multiplicative reduct (R, .) is a regular semigroup.

Rao M. K.[12] defined Γ -semiring as generalization of semiring and Γ -rings. Bhuniya at el [2] studyied ML+. In this article we introduce the notion of quasi kideals in a Γ -semiring and characterize the k-regular **F**-semirings using quasi kideals. Bourne [3] introduced the k-regular semirings as a generalization of regular rings. Later these semirings have been studied by Sen, Weinert, Bhuniya, Adhikari [1], [12], [13], [14]. For any semigroup F, the semiring P(F) of all subsets of F is a k-regular semiring if and only if F is a regular semigroup. Here we show that Q is a quasi k-ideal of the Γ semiring P(F) if and only if Q = P(P) for some quasiideal P of F. Thus it is of interest to characterize the k-regular Γ semirings using quasi k-ideals.In this paper we have discussed the characterization of the k-regular Γ semirings by their quasi k-ideals.

2. PRELIMINARIES.

Definition 2.1. Γ- semiring:-Let (M, +) and $(\Gamma, +)$ be commutative semigroups. Define the mapping $M \times \Gamma \times M \to M$ (image to be denoted by $(x, \alpha, y) \rightarrow x\alpha y$) satisfying the following conditions:

i) $x\alpha y \in M$,

ii) $(x+y) \alpha z = (x\alpha z) + (y\alpha z), x(\alpha$ $(+ \beta)z = x\alpha z + x\beta z, \quad x\alpha(y + z) =$ $x\alpha y + x\alpha z$,

iii)(x α y) β z = x α (y β z), for all x, y, $z \in M$ and all $\alpha, \beta \in \Gamma$.

Then M is a Γ - semiring.

Every Γ -ring is a Γ - semiring but every Γ -semiring need not be a Γ -ring. For this we consider the following Example.

Example 1. Let $M = \Gamma = (Z^+, +)$ be the semigroup of all nonzero positive integers. Define the mapping $M \times \Gamma \times M \rightarrow M$ (image to be denoted by $(x, \alpha, y) \rightarrow x\alpha y$) where xay is the usual multiplication of the x, α and y for all x, y \in M and all $\alpha \in$ Γ . Then M is a Γ -semiring but not a semiring.

Definition 2.2. Sub- Γ -semiring:-Let M be a Γ -semiring. A nonempty subset S of M is a sub- Γ -semiring of M if S itself is a Γ -semiring with the same operations of Γ -semiring M.

Definition 2.3. Ideal of a \Gamma-semiring:-A nonempty subset I of a Γ -semiring M is a left (resp. right) ideal of M if for x, y $\in I$ and $r \in M$ we have $x+y \in I$ and $r\alpha x \in I(resp. x\alpha r \in I)$, where $\alpha \in \Gamma$. If I is both left as well as right ideal then we say that I is an ideal of M.

Example 2. Consider the Example of the Γ -semiring M followed by the definition. Here I = $(2Z^+, +, \Gamma)$ is an ideal of M.

Following are the definitions introduced for generalization of algebraic structure semigroups, semilattice, semiring, reduct by considering set Γ for $\alpha \in \Gamma$ of operations by replacing multiplication operation (.):

Definition 2.4. A band is a Γ -semigroup in which every element is an idempotent. A commutative band is called a Γ -semilattice. Throughout this paper, unless otherwise stated, M is always a Γ -semiring whose additive reduct is a Γ -semilattice and the variety of all such Γ -semirings is denoted by ML+.

Definition 2.5. A non-empty subset L of a Γ -semiring M is called a left ideal of M if $L + L \subseteq L$ and M $\Gamma L \subseteq L$. The right ideals are defined dually. A subset I of M is called an ideal of M if it is both a left and a right ideal of M. A non-empty subset A is called an interior ideal of M if $A + A \subseteq A$ and M $\Gamma A \Gamma M \subseteq A$. A non-empty subset A of M is called semiprime if for $a \in M$, $a^2 = a\alpha a \in A$ implies that $a \in A$.

Definition 2.5. Henriksen [5] defined an ideal (left, right) I of a semiring S to be a k-ideal (left, right) if for a; $x \in S$, a; a + x $\in I$) x $\in I$. We extend to Γ -semiring M.

We define interior k-ideal similarly.

Definition 2.6. A non-empty subset A of M is called a k-subset of Γ -semiring M if for $x \in M$, $a \in A$; $x + a \in A$ implies that $x \in A$.

Definition 2.8. The k-closure \overline{A} of a non-empty subset A is given by,

 $\overline{A} = \{ x \in S / \exists a, b \in A \text{ such that } x + a = b \}.$

This is the smallest k-subset containing A. If A and B be two subsets of M such that $A \subseteq B$ then it follows that $\overline{A} \subseteq \overline{B}$. Since the additive reduct (M, +) is a Γ -semilattice, it follows that an ideal (left, right) K of M is a k-ideal(left, right) if and only if $\overline{K} = K$.

Definition 2.9. A sub Γ -semiring Q is called a quasi ideal of M if $Q\Gamma M \cap M\Gamma Q \subseteq Q$. A quasi ideal Q is called a quasi k-ideal of M if $\overline{Q} = Q$.

For examples of quasi k-ideals of a Γ -semiring we would like to explore the following natural connection between quasi ideals of a Γ -semigroup F and quasi k-ideals of the Γ -semiring P(F) of all subsets of F.

Definition 2.10. Let F be a Γ -semigroup and P(F) be the set of all subsets of F. Define addition and multiplication on P(F) by:

 $U + V = U \cup V$ and

 $U \Gamma V = \{a\alpha b / a \in U; b \in V, \alpha \in \Gamma\}\}, \text{ for all } U, V \in P(F),$

Then $(P(F); +; \alpha)$, $\alpha \in \Gamma$ is a Γ -semiring whose additive reduct is a Γ -semilattice. Then we have the following result. **Theorem 2.11.** Let F be a Γ -semigroup. Then Q is a quasi k-ideal of P(F) if and only if Q = P(P) for some quasi-ideal P of F.

Proof. Let P be a quasi ideal of F and Q = P(P). Let $A = \{a_1, a_2, ..., a_n\} \in M\GammaQ \cap Q\Gamma M$ where M = P(F). Then for each a_i there exist $\{s_i\}, \{t_i\} \in M$ and $\{p_i\}, \{q_i\} \in Q$ such that $a_i = s_i \alpha p_i = q_i \alpha t_i$. But $a_i \in F\GammaP \cap P\GammaF \subseteq P$ for all i. Thus $A \subseteq P$. Hence $A \in Q$. Therefore $M\GammaQ \cap Q\Gamma M \subseteq Q$. Thus Q is a quasi ideal of M. Now let $U \in M$ and $V_1, V_2 \in Q$ such that $U + V_1 = V_2$. Then we have $U \cup V_1 = V_2$. Which implies that $U \subseteq P$. Thus $U \in Q$. Therefore Q is a quasi k-ideal of M.

Conversely, let Q be a quasi k-ideal of M = P(F). We consider $P = \bigcup_{U \in Q} U$. Then $P \subseteq F$ and $Q \subseteq P(P)$. Let $B \in P(P)$. Then $B \in Q$. Therefore Q = P(P).

We now prove that P is a quasi ideal of F i.e. $F\Gamma P \cap P\Gamma F \subseteq P$. Let $x \in F\Gamma P \cap P\Gamma F$. Then there exist p, $q \in P$ and s, $t \in F$ such that $x = s\alpha p = q\alpha t$. Now $M\Gamma Q \cap Q\Gamma M \subseteq Q \subseteq P(F) = M$. Now $\{s, t\} \{p, q\} \in M\Gamma Q$ and $\{p, q\} \{s, t\} \in Q\Gamma M$. Also $\{s\alpha p\} = \{s\}\alpha\{p\} \in M\Gamma Q$ and $\{q\alpha t\} = \{q\} \alpha\{t\} \in Q\Gamma M$. Thus $\{x\}\in M\Gamma Q \cap Q\Gamma M \subseteq Q$ and so $x \in P$. Therefore $F\Gamma P \cap P\Gamma F \subseteq P$ and hence P is a quasi ideal of F.

Lemma 2.12 Let M be a Γ -semiring. Then for all right k-ideal R and left k-ideal L of M, R \cap L is a quasi k-ideal of M.

Proof. Let R and L be a right k-ideal and left k-ideal of M respectively. Then we have $(R \cap L) \Gamma M \cap M\Gamma(R \cap L) \subseteq R\Gamma M \cap M\Gamma L$ as $R \cap L \subseteq R$ and $R \cap L \subseteq L \subseteq R \cap L$ as $R\Gamma M \subseteq R$ and $M\Gamma R \subseteq L$ and so $R \cap L$ is a quasi ideal of M. Since intersection of two k-subsets is a k-set of a Γ -semiring, it follows that $R \cap L$ is a quasi k-ideal of M. Let $a \in M$. We denote $L[a] = \{\sum_{i=1}^{n} x_i / x_i \in \{a\} \cup Ma\}$. Since the additive reduct (M, +) is a semilattice, it follows that $L[a] = \{a + s\alpha a / s \in M, \alpha \in \Gamma\}$. Then L[a] is a sub- Γ -semiring of M. Also for any $s \in M$ and $u \in L[a]$, we have $s\alpha u \in M$ awhich implies that $M\Gamma L[a] \subseteq L[a]$ and so L[a] is a left ideal of M. As in [2], following description for the principal left k-ideal $L_k(a)$ and right k-ideal $R_k(a)$ of M can be verified easily.

(1)

Lemma 2.13. Let M be a Γ -semiring and a \in M.

1. Then the principal left k-ideal of M generated by a is given by $L_k(a) = \{u \in M / u + a + s\alpha a = a + s\alpha a, \text{ for some } s \in M, \alpha \in \Gamma \}.$

2. Then the principal right k-ideal of M generated by a is given by $R_k(a) = \{u \in M / u + a + a\alpha s = a + a\alpha s, \text{for some } s \in M, \alpha \in \Gamma \}$.

3. QUASI IDEALS IN K-REGULAR Γ-SEMIRINGS.

Bourne [3] defined a Γ -semiring M to be regular if for each $a \in M$ there exist x, $y \in M$ such that $a + a\alpha x\alpha a = a\alpha y\alpha a$, for $\alpha \in \Gamma$. If a Γ -semiring M happens to be a ring then the Von Neumann regularity and the Bourne regularity are equivalent. This is not true in a Γ -semiring in general (For counter example we refer [12]). Adhikari, Sen and Weinert [1] renamed the Bourne regularity of a Γ -semiring as k-regularity to distinguish from the notion of Von Neumann regularity.

Definition 3.1 A Γ -semiring M is called a k-regular Γ -semiring if for each $a \in M$ there exist x, $y \in M$ such that $a + a\alpha x \alpha a = a\alpha y \alpha a$, $\alpha \in \Gamma$.

Since (M, +) is a semilattice,

we have $a + a\alpha x\alpha a = a\alpha y\alpha a \Longrightarrow a + a\alpha x\alpha a + (a\alpha x\alpha a + a\alpha y\alpha a) = a\alpha y\alpha a + (a\alpha x\alpha a + a\alpha y\alpha a)$

$$\Rightarrow a + a\alpha(x+y)\alpha a = a\alpha(x+y)\alpha a$$
.

Thus, a Γ -semiring M is k-regular if and only if for all $a \in M$ there exists $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x \alpha a = a\alpha x \alpha a$.

Let M be a k-regular Γ -semiring and $a \in M$. Then there exists $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x\alpha a = a\alpha x\alpha a$. Then we have

 $a + a\alpha x\alpha a = a\alpha x\alpha a \implies a + a\alpha x\alpha (a + a\alpha x\alpha a) = a\alpha x\alpha (a + a\alpha x\alpha a)$

 \Rightarrow a + aaxaaaxaa = aaxaaaxaa.

Thus, a Γ -semiring M is k-regular if and only if for all a \in M there exists x \in M such that

 $a + a \alpha x \alpha a \alpha x \alpha a = a \alpha x \alpha a \alpha x \alpha a$

For examples and properties of k-regular Γ -semirings we refer [1], [12], [13], [14].

We observe that the proof of this result can be made signicantly simpler when the Γ -semiring M is taken from ML+. Theorem 3.2 Let M be a Γ -semiring. Then M is k-regular if and only if $\overline{R\Gamma L} = R \cap L$ for any right k-ideal R and left k-ideal L of M.

Proof. Let M be a k-regular Γ -semiring. Then for any right k-ideal R and left k-ideal L of M, R $\Gamma L \subseteq R\Gamma M \subseteq R$ and R $\Gamma L \subseteq M\Gamma L \subseteq L$. Then $\overline{R\Gamma L} \subseteq R \cap L$ implies that $R\Gamma L \subseteq R \cap L$. Also for a $\in R \cap L$ there exists $x \in M$ such that a + aaxaa = aaxaa. Then $(aax)aa \in R\Gamma L$ implies that a $\in \overline{R\Gamma L}$ and so $R \cap L \subseteq \overline{R\Gamma L}$. Thus $\overline{R\Gamma L} = R \cap L$.

Conversely, let $\overline{R\Gamma L} = R \cap L$ for any right k-ideal R and left k-ideal L of M. Let $a \in M$, $\alpha \in \Gamma$, $R = R_k(a) = \{u \in M / u + a + a\alpha s = a + a\alpha s\}$ and $L = L_k(a) = \{v \in M / v + a + s\alpha a = a + s\alpha a\}$. Then $a \in R \cap L = \overline{R\Gamma L}$. Then there exist $u \in R$ and $v \in L$ such that $a + u\alpha v = u\alpha v$. This implies that $a + (a + a\alpha s)\alpha(s\alpha a + a) = (a + a\alpha s)(s\alpha a + a)$. Thus $a + a\alpha\gamma\alpha a = a\alpha\gamma\alpha a$ for some $y \in M$, $\alpha \in \Gamma$. Hence M is k-regular. Now we give several equivalent characterizations of k-regularity in terms of quasi k-ideals.

Theorem 3.3 Let A be a non-empty subset of Mand A be a k-ideal of M if and only if k-regular Γ -semiring. Then A is a quasi A = $\overline{R\Gamma L}$, where R is a right k-ideal and L is a left k-ideal of M.

Proof. Let A be a quasi k-ideal of k-regular Γ -semiring M and $a \in A$. Then $R = R_k(a)$ and $L = L_k(a)$ are right k-ideal and left k-ideal of M respectively. Since M is k-regular and $a \in A \subseteq M$, there is $x \in M$ such that $a + a\alpha x\alpha a\alpha x\alpha a = a\alpha x\alpha a\alpha x\alpha a$. Now $a \in R$, $\alpha \in \Gamma \implies a\alpha x \in R$ and $a \in L \implies (a\alpha x)\alpha a \in L$. Then $a\alpha x\alpha a\alpha x\alpha a \in R\Gamma L$. Thus $a \in \overline{R\Gamma L}$. Therefore $A \subseteq \overline{R\Gamma L}$. Now consider $u \in R$, $\alpha \in \Gamma$ and $v \in L$. Then, by Lemma 2.4, there are s, $t \in M$ such that $u + a\alpha s + a = a\alpha s + a$ and $v + t\alpha a + a = t\alpha a + a$. Then $u\alpha v + (a\alpha s + a)\alpha v = (a\alpha s + a)\alpha v$ implies that $u\alpha v + (a\alpha s + a)\alpha(t\alpha a + a) = (a\alpha s + a)\alpha(t\alpha a + a) \implies u\alpha v + a\alpha(s\alpha t + s + t)\alpha a + a^2 = a\alpha(s\alpha t + s + t)\alpha a + a^2$. Again $a\alpha(s\alpha t + s + t)\alpha a + a^2 \in A\Gamma M \cap M\Gamma A \subseteq A$ shows that $u\alpha v \in \overline{A} \subseteq A$. Then $R\Gamma L \subseteq A$ and so $\overline{R\Gamma L} \subseteq A$. Hence $A = \overline{R\Gamma L}$.

Conversely, let for a non-empty subset A of M, $A = \overline{R\Gamma L}$, where R is a right k- ideal and L is a left k- ideal of M. But by the above theorem, for a k-regular Γ -semiring M, $\overline{R\Gamma L} = R \cap L$. Then $A = R \cap L$. But $R \cap L$ is quasi k-ideal of S[Lemma 2:3]. Thus A is a quasi k-ideal of M.

Theorem 3.4 For a Γ -semiring M the following conditions are equivalent:

1. M is k-regular.

2. Q = $\overline{Q\Gamma M\Gamma Q}$ for every quasi k-ideal Q of M.

Proof. (1) \Rightarrow (2): Let Q be a quasi k-ideal of M. Then $Q\Gamma M\Gamma Q \subseteq Q\Gamma M \cap M\Gamma Q \subseteq Q$ implies that $\overline{Q\Gamma M\Gamma Q} \subseteq Q$. Let $a \in Q$. Since M is k-regular, there is $x \in M$ such that $a + a\alpha x\alpha a = a\alpha x\alpha a$. Then $a\alpha x\alpha a \in Q\Gamma M\Gamma Q$ implies that $a \in \overline{Q\Gamma M\Gamma Q}$, whence $Q \subseteq \overline{Q\Gamma M\Gamma Q}$. Thus $Q = \overline{Q\Gamma M\Gamma Q}$.

 $(2) \Rightarrow (1)$: Let $a \in M$. Then $Q = L_k(a) \cap R_k(a)$ is a quasi k-ideal of M, by Lemma 2.3 and 2.4. Then $a \in Q = Q\Gamma M\Gamma Q$ and this implies that there exist $q_1, q_2, q_3, q_4 \in Q$ and $s_1, s_2 \in M$, $\alpha \in \Gamma$ such that $a + q_1 \alpha s_1 \alpha q_2 = q_3 \alpha s_2 \alpha q_4$

 $\Rightarrow a + (q_1 + q_2 + q_3 + q_4) \alpha (s_1 + s_2) \alpha (q_1 + q_2 + q_3 + q_4) = (q_1 + q_2 + q_3 + q_4) \alpha (s_1 + s_2) \alpha (q_1 + q_2 + q_3 + q_4)$ \Rightarrow a + q α s α q = q α s α q, where q = (q_1 + q_2 + q_3 + q_4) \in Q = L_k(a) \cap R_k(a) and s = (s_1 + s_2) \in M. Then there exist x, y \in M, $\alpha \in \Gamma$ such that $q + x\alpha a + a = x\alpha a + a$ and $q + a\alpha y + a = a\alpha y + a$ [Lemma 2.4]. Thus we have $a + q \alpha s \alpha q = q \alpha s \alpha q$ $\implies a + (q + a\alpha y + a)\alpha \ s\alpha(q + x\alpha a + a) = (q + a\alpha y + a) \ \alpha s \ \alpha \ (q + x \ \alpha \ a + a)$ \Rightarrow a + (a α y + a) α s α (x α a + a) = (a α y + a) α s α (x α a + a) $\Rightarrow a + a \alpha (y \alpha s \alpha x + y \alpha s + s \alpha x + s) \alpha a = a \alpha (y \alpha s \alpha x + y \alpha s + s \alpha x + s) \alpha a$ \Rightarrow a + a α t α a = a α t α a, where t = y α s α x + y α s + s α x + s \in M, $\alpha \in \Gamma$ and so M is a k-regular Γ -semiring. **Theorem 3.5** For a Γ -semiring M the following conditions are equivalent: 1. M is k-regular. 2.Q \cap J = $\overline{Q\Gamma J \Gamma Q}$ for every quasi k-ideal Q and every k-ideal J of M. 3.Q \cap I = $\overline{Q\Gamma I\Gamma Q}$ Q for every quasi k-ideal Q and every interior k-ideal I of M. **Proof.** Since each k-ideal is an interior k-ideal, it is clear that $(3) \Rightarrow (2)$. Hence we are to prove $(1) \Rightarrow (3) \text{ and } (2) \Rightarrow (1) \text{ only.}$ (1) \Rightarrow (3): Let Q be a quasi k-ideal and I be an interior k-ideal of M. Then QFIFQ \subseteq QF MFQ \subseteq QF M \cap MFQ \subseteq Q and $Q\Gamma I\Gamma Q \subseteq M\Gamma I\Gamma M \subseteq I$ implies that $Q\Gamma I\Gamma Q \subseteq Q \cap I$ and so $\overline{Q\Gamma I\Gamma Q} \subseteq Q \cap I$. Let $a \in Q \cap I$. Since M is k-regular, there is $x \in M$ such that $a + a\alpha x\alpha a\alpha x\alpha a = axaxa$, $\alpha \in \Gamma$ by (1). Now $a\alpha(x\alpha a\alpha x) \alpha a \in Q\Gamma$ (MFI FM) $\Gamma Q \subseteq Q\Gamma I \Gamma Q$ implies that a \in QFIFQ and so Q \cap I $\subseteq \overline{QFIFQ}$. Thus Q \cap I $= \overline{QFIFQ}$. (2) \Rightarrow (1): Let Q be a quasi k-ideal of M. Since M is a k-ideal of M, $Q \cap M = \overline{Q \Gamma M \Gamma Q}$ i.e. $Q = \overline{Q \Gamma M \Gamma Q}$. Hence M is a k-regular Γ -semiring, by Theorem 3.4. **Theorem 3.6** For a Γ -semiring M the following conditions are equivalent: 1. M is k-regular. 2. R \cap L $\subseteq \overline{R\Gamma L}$ for every right k-ideal R and every left k-ideal L of M. 3. $Q \cap L \subseteq \overline{Q \Gamma L}$ for every quasi k-ideal Q and every left k-ideal L of M. **Proof.** (1) \Rightarrow (3): Let Q be a quasi k-ideal and L be a left k-ideal of M respectively. Let $a \in Q \cap L$. Since M is k-regular, there is $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x\alpha a = a\alpha x\alpha a$. Now $a\alpha(x\alpha a) \in Q \Gamma(M\Gamma L) \subseteq Q\Gamma L$. Then $a \in Q\Gamma L$. Thus $Q \cap L \subseteq Q\Gamma L$. $(3) \Rightarrow (2)$: Since every right k-ideal is a quasi k-ideal of M, it follows that $\mathbb{R} \cap \mathbb{L} \subseteq \overline{\mathbb{R} \cap L}$. $(2) \Rightarrow (1)$: Let $a \in M$. Consider $L = L_k(a)$, $R = R_k(a)$. Then $a \in R \cap L$ implies that there exist $r \in R$ and $l \in L$ such that $a + r \alpha l = r \alpha l$. Again there exist s, $t \in M$ such that $r + a \alpha s + a = a \alpha s + a$ and $l + t \alpha a + a = t \alpha a + a$. Thus we have $a + r \alpha l = r \alpha l \Longrightarrow a + (r + a \alpha s + a) \alpha (l + t \alpha a + a) = (r + a \alpha s + a) \alpha (l + t \alpha a + a)$ \Rightarrow a + a² + a α u α a = a² + a α u α a, for some u \in M $\Rightarrow a + a \alpha (a + a^{2} + a \alpha u \alpha a) + a \alpha u \alpha a = a \alpha (a + a^{2} + a \alpha u \alpha a) + a \alpha u \alpha a$ \Rightarrow a + a α v α a = a α v α a, for some v = a + a α u + u \in M, whence M is k-regular Γ -semiring. The left-right dual of this theorem is as follows: **Theorem 3.7** For a Γ -semiring M the following conditions are equivalent: 1. M is k-regular. 2.Q $\cap R \subseteq \overline{R\Gamma Q}$ for every quasi k-ideal Q and every right k-ideal R of M. **Theorem 3.8** For a Γ-semiring M, the following conditions are equivalent: 1. M is k-regular. 2.R $\cap Q \cap L \subseteq \overline{R\Gamma Q\Gamma L}$ for every right k-ideal R, every quasi k-ideal Q and every left k-ideal L of M. **Proof.** (1) \Rightarrow (2): Let R, Q and L be any right k-ideal, any quasi k-ideal and any left k-ideal of M respectively. Let $a \in R$ $\cap Q \cap L$. Since M is k-regular there exists $x \in M$, $\alpha \in \Gamma$ such that $a + a\alpha x \alpha a\alpha x \alpha a = a\alpha x \alpha a \alpha x \alpha a$. However $(\alpha \alpha x) \alpha \alpha \alpha (x \alpha a) \in R \Gamma Q \Gamma L$, whence $a \in \overline{R \Gamma Q \Gamma L}$. Thus $R \cap Q \cap L \subseteq \overline{R \Gamma Q \Gamma L}$.

 $(2) \Rightarrow (1)$: Let R and L be any right k-ideal and any left k-ideal of M respectively. Then R \cap L is quasi k-ideal of M. Then we have

 $R \cap (R \cap L) \cap L \subseteq \overline{R\Gamma(R\Gamma L)\Gamma L} \implies R \cap L \subseteq \overline{R\Gamma L}$ and so M is a k-regular Γ -semiring, by Theorem 3.6.

REFERENCES

[1] M. R. Adhikari, M. K. Sen and H. J. Weinert, On k-regular semirings, Bull. Calcutta Math. Soc., 88 (1996) 141 144.

[2] A. K. Bhuniya and K. Jana, Bi-ideals in k-regular and intra k-regular semirings, Discuss. Math. Gen. Algebra Appl., 31 (2011) 5 23.

[3] S. Bourne, The Jacobson radical of a semiring, Proc. Natl. Acad. Sci. USA, 37 (1951) 163 170.

[4] C. Donges, On quasi ideals of semirings, Int. J. Math. Math. Sci., 17 (1994) 47 58.

[5] M. Henricksen, Ideals in semirings with commutative addition, Notices Amer. Math. Soc., 5 (1958) 321.

[6]K. M. Kapp, On bi-ideals and quasi-ideals in semigroups, Publ. Math. Debrecen, 1 (1969) 179 185.

[7] K. M. Kapp, Green's relations and quasi ideals, Czechoslovak Math. J., 19(94) (1969) 80 85.

[8] Y. Kemprasit, Quasi-ideals and bi-ideals in semigroups and rings, Proceedings of the Inter-national Conference on Algebra and its Applications, 2002, 30 46.

[9] S. Lajos, Generalized ideals in semigroups, Acta. Sci. Math. (Szeged), 22 (1961) 217 222.

[10]S. Lajos, On quasi-ideals of regular rings, Proc. Japan Acad. Ser. A Math. Sci., 38 (1962) 210 211.

[11] J. V. Neumann, On regular rings, Proc. Natl. Acad. Sci. USA, 22 (1936) 707 713.

[12]M. K. Rao, Γ- semiring I, Southeast Asian Bulletin of Maths., 19(1995) 49-54.

[13] M. K. Sen and A. K. Bhuniya, Completely k-regular semirings, Bull. Calcutta Math. Soc., 97 (2005) 455 466.

[14] M. K. Sen and A. K. Bhuniya, On Additive Idempotent k-Cli ord Semirings, Southeast Asian Bull. Math., 32 (2008) 1149 1159.

[15] M. K. Sen and A. K. Bhuniya, On semirings whose additive reduct is a semilattice, Semi-group Forum, 82 (2011) 131-140.

[16] O. Steinfeld, Über die Quasiideale von Halbgruppen, Publ. Math. Debrecen, 4 (1956) 262275.

[17] O. Steinfeld, Über die Quasiideale von Ringen, Acta Sci. Math. (Szeged), 17 (1956) 170 180.

[18] O. Steinfeld, Über die Quasiideale von Haibgruppen mit eigentlichem Suschkewitsch-Kern, Acta Sci. Math. (Szeged), 18 (1957) 235 242.

[19]O. Steinfeld, Quasi-ideals in rings and regular semigroups, Akademiai Kiado, Budapest, 1978.

Alandkar S. J. Head, Department of Mathematics, Walchand College of Arts & Science, Solapur.