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ABSTRACT

One of the main
problemsin the theory of
fuzzy topological spaces

is to obtain an
appropriate and
consistent notion of a
fuzzy metric  space.
Many authors have
Investigated this
question and several

notions of a fuzzy metric
space have been defined
and studied.Some
common fixed point
theorems in complete
fuzzy metric spaces are
proved which generalize
earlier results. We also
introduce the concept of

R-weak commutatively
of type (P) in fuzzy
metric  spaces. Some
related results and

illustrative examples are
also discussed.In  this
paper, we state and
prove some common
fixed point theorems in

fuzzy metric  spaces.
These theorems
generalize and improve
known results.

KEYWORDS:Fixed
point; Fuzzy metric
Spaces.
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theory, logicetc. Fuzzy
set theory has
applications in applieg
sciences such as neu
networktheory, stability
theory, mathematicd
programming, modeling
theory, engineering
sciences, medice

1. INTRODUCTION

One of the mos
interesting researc
topics in fuzzy topolog
is to find an appropriat
definition of  fuzzy
metric space for it
possible applications i

several areas.It proved sciences (medica
turnin Oint. ﬁ] th 'genetiCS, nervou

o system), image
development 0

processing,control

mathematics when tEtheory, communicatiof

these mappings in metric
linear spaces. His result
is a generalization of the
fixed point theorem for
point-to-set maps of
Nadlef. Therefore,
several fixed point
theorems for types of
fuzzy contractive
mappings have appeared
(see, for instande® "
89n this paper, we
state and prove some
L common fixed point
jtheorems in fuzzy metric
sipaces. These theorems
generalize and improve
(known results.

]There are various ways
Jto define a fuzzy metric
|Space, here we adopt the
|notion that, the distance
Sbetween objects is fuzzy,
. and the objects
themselves may be
]fuzzy or not.

notion offuzzy set wa
introduced by Zadé
which laid the

etc. No wonder th
fuzzy fixed point theor

2.BASIC

hasbecome an area |of RELIMINARIES

interest for specialists inThe  definitions and
fixed point theory, or terminologies for further
fuzzy  mathematicshasdiscussions are taken
offered new possibilities from  Heilperd. Let
for fixed point theorists. | (X, d) be a metric linear
In 1965, the theory of space. ANuzzy
fuzzy sets was set in Xis a function
investigated by Zadéh| with domainX and

foundation of fuzz
mathematics.

Consequently the last
three decades were ver
productive for
mathematicsand
recent literature
observed
fuzzification

In 1981, Heilperffirst
Introduced the concey
‘of fuzzy contractive
mappings and proved

every
ofmathematics such
arithmetic, topology

values in [0, 1]. IfAis a
tfuzzy set and € X, then
the function-valué\(x)
as called thegrade of

graph theory, probabilit

fixed point theorem for

membership of xin A.
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The collection of all fuzzy sets X is denoted by I(X).
Let Ael(X) anda € [0, 1]. Thea-level set of A, denoted byAa, is defined by

Ay, ={x:Ax) =z a} of 2e (0,1, Aj={x:A4{x) =0},

wheneverd? s the closure of set (nonfuzBy)

Definition 2.1.

A fuzzy setAin Xis anapproximate quantity iff its a-level set is a nonempty compact convex subset
(nonfuzzy) ofX for eachu € [0, 1] andsupxeXA(X) = 1.

The set of all approximate quantities, denote®\ipX ), is a subcollection of I(X).

Definition 2.2.
Let A, Be W(X), a € [0, 1] andCP(X) be the set of all nonempty compact subsebs dhen
plA4,B)= inf d(x.y), d.4,8)= sup d(x,y) and

TEA :r..'.'l:_.E:r -1'-:.-":.'-5-'-:.53'

D,(4,8) = H(4,,B,),

whereH is theHausdor ff metric between two sets in the collectiGP(X). We define the following functions
plA, B) =supp,(4.B), &(A4,B) =supd.({4,B) and
¥ ¥

D{A, B) = supD,(4, B).

o
It is noted thapa is non-decreasing function of

Definition 2.3.

LetA,Be W(X). ThenAis said to benore accuratethanB (orBincludesA), denoted by c B,
if A(X) @ B(x) for eachx € X.

The relationc induces a partial order &fi(X).

Definition 2.4.

Let X be an arbitrary set antlbe a metric linear spacdeé.is said to be &zzy mapping if F is a mapping
from the seiX into W(Y), i.e.,F(X) € W(Y) for eachx € X.

The following proposition is used in the sequel.

Proposition 2.1.

If A, B e CP(X) and a € A, thenthere existsb € B such that d(a, b) & H(A, B).

Following Beg and Ahmed', let (X, d) be a metric space. We consider a sub-collection of 1(X) denoted by
Wx(X). Each fuzzy set A€ W¢(X), its a-level set is a nonempty compact subset (nonfuzzy) of X for each
a € [0, 1]. It is obvious that each element A € W(X) leadsto A € W+(X) but the converseis not true.

The authors introduced the improvements of the lasim Heilperfias follows.

Lemma 2.1
If {x0} < Afor each A € W+(X) and x0 € X, then pa(x0, B) @ Da(A, B) for each B € W+(X).

Lemma 2.2.
pa(x, A) B d(x, y) + pa(y, A) for all x,y € Xand A € W+(X).
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Lemma 2.3.
Let x € X, A e W/(X) and {x} be a fuzzy set with membership function equal to a characteristic function of the
set {x}. Then {x} c Aifand only if pa(x, A) = O for each a € [0, 1].

Lemma 2.4.
Let (X, d) be a complete metric space, F: X — W+(X) be a fuzzy map and x0 € X. Then there exists x1 € X such
that {x1} c F(x0).

Remark 2.1.

It is clear that Lemma 2.4 is a generalization ofresponding lemma in Arora and Shatnzand
Proposition 3.2 in Lee and Cho

Let ¥ be the family of real lower semi-continuous fuopsF: [0, ©)® — R, R:= the set of all real
numbers, satisfying the following conditions:

(w1)
F is non-increasing in 3rd, 4th, 5th, 6th coordinaegable,

(w2)
there exist$ € (0, 1) such that for every v & O with

(w21)
F(u,v,v,u,u+v, 0)a@ 0 or (¥2) F(u,v, u,v, 0,u+vVv) 2 0, we havas & hv, and

(w3)
F(u, u, 0, O,u, u) > 0O for allu > 0.

3. MAIN RESULTS
In 2000, Arora and Sharrhproved the following result.

Theorem 3.1.
Let (X, d) be a complete metric space and T1, T2be fuzzy mappings from X into W(X). If there is a constant g,
0@ g<1,suchthat, for each x,y € X,

D(T.(x), T2(y))Bamax{d(x,y),p(x,Tu(x)),p(Y. T2(y)).p(x, T2(y)). P(Y. T+(X)},
thenthere existsz € X such that {z} < T1(2) and {Z} < T2(2).

Remark 3.1.

If there is a constamf, 0 g < 1, such that, for eachy € X,equation(1)

D(T1(x), T2(y))Bamax{d(x,y),p(x,Ti(x)),p(y, T2(y))},

then the conclusion of Theorem 3.1 remains valitis Tesult is considered as a special case of €heor
3.1.Beg and Ahmell generalized Theorem 3.1 as follows.

Theorem 3.2.

Let (X, d) be a complete metric space and T1, T2be fuzzy mappings from X into W+(X). If thereis

aF € ¥suchthat, for all x, y € X,equation(2)
F(D(T1(x),T2(y)).d(x,y),p(X,Ti(x)),p(Y, T2(y)).P(X, T2(y)),p(y, T:(x))) BO,

then there existae X such that £ c T1(2) and } < T,(2).

Widely inspired by a paper of Tas et'alwe give another different generalization of Theor3.1 with
contractive condition (1) as follows.

Theorem 3.3.

Let (X, d) be a complete metric space and T1, T2be fuzzy mappings from X into W+(X). Assume that there exist
cl, c2,c3 [0, ) withcl+ 2c2 <1andc2+ c3 < 1suchthat, for all x, y € X,equation (3)
D*(T1(x),T2(y)) Beamax{d®(x,y),p*(x, T1(x)),p*(y, T2(y))}+comax{p(x, T (x)p(x, T2(y)),P(y

(X)) (Y, T2(y))H+csp (X, T2(y))p(Y, Ta(x)).
Thenthere exists z € X such that {z < T1(2) and {Z} < T2(2).

Available online at www.lsrj.in



FIXED POINT THEOREMSIN FUZZY METRIC SPACES Volume - 6 | Issue - 6 | December — 2016

Proof.

Let Xy be an arbitrary point iX. Then by Lemma 2.4, there exists an elemegtX such that %} < Ti(Xg).
Forx; € X, (Ta(x1))1is nonempty compact subset>of Since Ti(Xo))1, (T2(X1)):1 € CP(X) andx; € (T1(Xo))1,
then Proposition 2.1 asserts that there exjsts(Tx(x,))1 such that(x;,x) @ D1(T1(Xo), T2(X1)). So, we obtain
from the inequalityD(A, B) @ Da(A, B) Vo € [0, 1] that

d*(x,20) € DYT (), Ta(x1)) € DTy (xg), Talxy))
< ey nmx{di{xﬂ._.m}._pl{:-q]._ Ty (xg)). PPl Talxy )}
+ea max{p(xo, Ti{xo))p(xo, Ta{x1)),

plxr, Tilxod)p(xr, Talx))}
+esplxo, Talx ) )plxi. Ti{xo) )
<erm H}-'.{dl{xﬂ._.m ) a’l{:q X2}

+ead (xg, x ) d(xp, x1 ) + d{x1,x5)].

If d(xq, X2) > d(Xo, X1), then we have
d?(x1,X2) B(C1+2¢)d*(X1,X2),

which is a contradiction. Thus,

d(Xl,Xz)hd(Xo,Xl),
wherefl = v/c1 + 2c2 < 1 Similarly, one can deduce that

d(X2,X3)Bhd(X1,X2).

By induction, we have a sequenga)(of points inX such that, for alh € N U {0},
{xasn} C Tifxae)y  {xamsz} C Tofxe).

It follows by induction thati(xn, xn.1) B h"(Xo, X1). Since

d{xn-_ -rm::' =4 d{xn 1 Xnel :' -+ d{xn £1Xpms 1::' + ...+ d{-rm— 1 -_-"-'Jr.l::'
< W'd(xg,x)) + A" Ia’{xﬂ.__m | f}’”_la’{xﬂ.__q )

ﬁ %(Jr{.‘{'.:]._.‘ﬂ::'a_
then lifmm m_.d(xn, xm) = 0. Therefore, ¥n) is a Cauchy sequence. Sine complete, then there
existsze Xsuch that lim_.xn=z Next, we show that 4 cTi(2,i=1, 2. Now, we get
from Lemma 2.1 and Lemma 2.2 that
Pu(Z,T2(2))Bd(Z,X2n+1) *Pu(X2n+1, T2(2))Bd(Z,Xn+1) *Do(T1(X2n), T2(2)),

for eacha € [0, 1]. Taking supremum amin the last inequality, we obtain thatequation(4)
P(z,T2(2))Bd(Z,Xen+1) +D(T1(X2n), T2(2)).

From the inequality (3)we have thatequation-(5)

D?(T1(Xz2n), T2(2))Bcimax{d®(Xzn,2),p’(Xzn, T1(X2n)),p*(Z, T2(2)) }+comax{p(Xzn, T1(X2n)) P(X

2n T2(2)),P(Z, To(X2n)) P(Z, T2(2)) }+C3p(Xan, T2(2)) P(Z, Te(X2n)) Bcimax{d*(Xzn, ), d*(X2n, X2n+1
),p)z(z,Tg(z))}+czmax{d(x2n,x2n+1)p(x2n,T2(z)),d(z,x2n+1)p(z,Tz(z))}+03p(x2n,Tg(z))d(z,xz
n+1)-

Lettingn — o in the inequalities (4) and (5), it follows that
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Sincever < 1 , we see tha(z, T»(2) = 0. So, we get from Lemma 2.3 tha} {£ T,(2). Similarly, one can be
shown that £ < T.(2).

Remark 3.2.

(I) Condition_(3)is not deducible from condition (8)nce the functiofr from [0,0)® into [0, ) defined as
F(h. .t tats,86) = ff = comax {65, 6,13} — comax{hits, tets} = catst,

for allty, t, ts, ty, ts, ts € [0, ), wherecy, ¢;, ¢z € [0, ) withc; + 2c, <1 andc, +c3 <1, does not general
satisfy condition ;). Indeed, we have that

F(u,u,0,0,u,u)=8&c,u?-csu?, for allu> 0 and does not imply th&{u, u, 0, O,u, u) > 0 for allu> 0.
31
It suffices to considét =32 €2 =9 €3 =3 and thep+ 2c,< 1 andc, + ¢; < 1 butF(u, u, 0, O,u, u) <0

for allu> 0. Therefore, Theorem 3.2 and Theorem 3.3 acedifferent generalizations of Theorem 3.1 with
contractive condition (1)

(m If there existey, ¢y, C3 € [0, ) withc, + 26, < 1 andc, +c3< 1 such that, for
all X,y € X,6*(T1(x),T2(y)) Bcimax{d*(x,y),p’(x, T1(x)),p?(y, T2(y))}+comax{p(x, T1(x))p(X,
T2(y),p(Y, T1(X))p (Y, T2(y)) +cap (X, T2(y))p (Y, T1(X),then the conclusion of Theorem 3.3 remains
valid. This result is considered as a special ch§deorem 3.3 becausdF(x), Fx(y)) B o(F1(X), F2(y)) [12,
page 414]. Moreover, this result generalizes Tha@e of Park and Jeohg

Example 3.1.
Let X =[0, 1] endowed with the metritdefined byd(x,y) =1 x-yl. It is clear that X, d) is a complete
metric space. Lel; =T, = T. Define a fuzzy mapping on X such that for alk € X, T(x ) is the characteristic

. 3
function for‘{z-r} . For eacl, y € X,

DAT{x), T(y)) = %a’l{x._ v)
< ¢, max{d”(x,»), p*(x, T(x)), (% T} + ¢
x max{p(x, Tx))pte, T0)sp TENP0: TO)))
+ esplx, T(y) )p(y, T(x)),

o, — 3
where®l = 75 = I anca; = c; = 0. The characteristic function for {0} is thexéd point ofT.
The following theorem generalizes Theorem 3.3 sequence of fuzzy contractive mappings.

Theorem 3.4.
Let (Tn: ne NU {0}) be a sequence of fuzzy mappings from a complete metric space (X, d) into W:(X).
Assume that there exist c1, ¢2, ¢3 € [0, o) withcl + 2c2 <1 and c2 + ¢3 <1 such that, for all x,y € X,

DA (To(x), To(¥) € ¢, max{d”(x, v), p*{x, To(x)), 2 (v, T, ()}
+ ¢y max{p(x, To(x)) plx, Ty (¥)),
P To(x))ply, Taly)) }
+ ep(x, Tu(y))p(y, Tolx)) Wn € N.

Then there exists a common fixed point of the family (Tn: n € N U {0}).

Pr oof.
PuttingT, = ToandT, =Tnvn € N in Theorem 3.3. Then, there exists a common figenht of the family
(Tn: ne N u {0}).
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Remark 3.3.
If there is al € @ such that, for alk, y € X,

DA (To(x), To(y)) € ¢ max{d*(x, v), p*{x, To(x)), p* (v, T, ()}
+ e max{p(x, To{x))plx, T.(¥)),
P, To(x))py. Tuly)) }
+ep(x, To(W))p(y. To(x)) Vo eN.

then the conclusion of Theorem 3.4 remains valitis Tesult is considered as a special case of €heor
3.4 for the same reason in Remark 3.2(1).

CONCLUSION

We defined the notion of fuzzy cone metric spacéekvis a generalization of fuzzy metric spaces and
then the topology induced by this space. By udmegé¢ definitions we gave some topological propgriach
as Hausdorfness, first countability. The cone wersif fuzzy Banach contraction theorem is alscestéiere.
So one can study, by using these results, on ther éik point theorems, similar topological propestof this
space and problems related to convergence of @segu
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